The Swiss Glaciers

2009/10 and 2010/11

Glaciological Report (Glacier) No. 131/132

The Swiss Glaciers

2009/2010 and 2010/2011

Glaciological Report No. 131/132

Edited by Andreas Bauder¹

With contributions from Andreas Bauder¹, Mauro Fischer², Martin Funk¹, Matthias Huss^{1,2}, Giovanni Kappenberger³

 1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich 2 Department of Geosciences, University of Fribourg 3 6654 Cavigliano

Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Sciences (SCNAT)

- c/o Laboratory of Hydraulics, Hydrology and Glaciology (VAW) at the Swiss Federal Institute of Technology Zurich (ETH Zurich)
 Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland http://glaciology.ethz.ch/swiss-glaciers/
- © Cryospheric Commission (EKK) 2015

ISSN 1424-2222

Imprint of author contributions:

:	Chapt. 1, 2, 3, 4, 5, App. A, B, C
:	Chapt. 6
:	Chapt. 1, 4
:	Chapt. 2, 4, 6
:	Chapt. 4
	: : :

Ebnoether Joos AG print and publishing Sihltalstrasse 82 Postfach 134 CH-8135 Langnau am Albis Switzerland

Cover Page: Riedgletscher (Peter Rovina, 31.8.2010)

Summary

During the 131th and 132th year under review by the Cryospheric Commission, Swiss glaciers continued to lose both length and mass. Both periods were characterized by small amounts of snow accumulation during winter and moderate melt rates in summer. The results presented in this report reflect the weather conditions in the measurement periods as well as the impacts of ongoing atmospheric warming over the past decades.

In autumn 2010, a length variation was determined for 95 of the 114 glaciers currently under active observation, while one year later such a result was obtained for 98 glaciers. In the two observation periods, 2009/10 and 2010/11, Swiss glaciers experienced further losses in length. Most of the measurement values vary between 0 and -30 m in both of these periods. Several glaciers displayed extraordinarily high retreat values in a single year in one of these two measurement periods. These can be attributed either to the separation of a protruding mass of dead ice, or to the melting of sections of the glacier that had constantly been growing thinner over a number of years.

Detailed mass balance figures were obtained for these eight glaciers: Basòdino, Findelen, Gries, Pizol, Plaine Morte, Rhone, Silvretta and Tsanfleuron, and point measurements were taken at several additional glaciers. The glaciers experienced significant mass losses especially in the second period, which ranks as about the fifth most negative in the long-term statistics.

Flow measurements were taken at selected glaciers in the Mauvoisin and Mattmark regions. The trend continued toward diminishing velocities, a clear reflection of the reduction in ice thickness due to lasting negative mass balances of the glaciers.

As a consequence of rapid changes over the last decade, an update of the inventory with surface area and additional parameters has been analyzed based on aerial orthophotographs acquired by swisstopo between 2008 and 2011. Selected results with a focus on the glaciers observed as part of the Swiss monitoring programme are presented.

Published Reports

Annual reports of the Swiss glaciers started in the year of 1880 by F.A. Forel (1841-1912).

Authors of the annual reports:	No.	Year
F.A. Forel et L. Du Pasquier	1 - 17	1880 - 1896
F.A. Forel, M. Lugeon et E. Muret	18 - 27	1897 - 1906
F.A. Forel, E. Muret, P.L. Mercanton et E. Ar-	28	1907
gand		
F.A. Forel, E. Muret et P.L. Mercanton	29 - 32	1908 - 1911
E. Muret et P.L. Mercanton	33 - 34	1912 - 1913
P.L. Mercanton	35 - 70	1914 - 1949
P.L. Mercanton et A. Renaud	71 - 75	1950 - 1954
A. Renaud	76 - 83	1955 - 1961/62
P. Kasser	84 - 91	1962/63 - 1969/70
P. Kasser und M. Aellen	92 - 104	1970/71 - 1982/83
M. Aellen	105 - 115	1983/84 - 1993/94
M. Aellen, M. Hoelzle und D. Vonder Mühll	116	1994/95
M. Hoelzle und D. Vonder Mühll	117	1995/96
M. Hoelzle, D. Vonder Mühll, A. Bauder und	118	1996/97
G.H. Gudmundsson		
M. Hoelzle, D. Vonder Mühll und M. Maisch	119	1997/98
M. Hoelzle, D. Vonder Mühll, M. Schwikowski	120	1998/99
und H.W. Gäggeler		
A. Bauder, A. Vieli und M. Hoelzle	121	1999/00
A. Bauder und M. Hoelzle	122	2000/01
A. Bauder, C. Schär und H. Blatter	123 - 124	2001/02 - 2002/03
A. Bauder, J. Faillettaz, M. Funk und A. Pralong	125 - 126	2003/04 - 2004/05
A. Bauder	127 - 132	2005/06 - 2010/11
Authors and editors of the glaciological two year	reports:	
P Kasser M Aellen und H Siegenthaler	95/96 - 99/100	1973/74 - 1978/79
M Aellen	101/102	1979/80 - 1980/81
M Aellen und F Herren	103/104 - 111/112	1981/82 - 1990/91
F Herren und M Hoelzle	113/114	1991/92 - 1992/93
E Herren M Hoelzle and M Maisch	115/116 - 119/120	1993/94 - 1998/99
E Herren A Bauder M Hoelzle and M Maisch	121/122	1999/00 - 2000/01
F Herren and A Bauder	123/124	2001/02 - 2002/03
A. Bauder and R. Rüegg	125/126	2003/04 - 2004/05
A. Bauder and C. Ryser	127/128	2005/06 - 2006/07
A. Bauder, S. Steffen and S. Usselmann	129/130	2007/08 - 2010/11
	/	/ - /

Contents

Su	Immary	iii
Ρι	ublished Reports	iv
1	Introduction	1
2	Weather and Climate2.1Weather and Climate in 2009/102.2Weather and Climate in 2010/11	3 3 4
3	Length Variation3.1Introduction3.2Length Variations in 2009/103.3Length Variations in 2010/113.4Length Variations in 2009/10 and in 2010/11, Summary3.5Length Variations - Statistics for 1880-2011	7 7 8 9 14
4	Mass Balance4.1Introduction, cumulative mean specific mass balances4.2Mass Balance in 2009/104.3Mass Balance in 2010/114.4Ghiacciaio del Basòdino4.5Findelengletscher4.6Griesgletscher (Aegina)4.7Pizolgletscher4.8Glacier de la Plaine Morte4.9Rhonegletscher4.10Silvrettagletscher4.11Glacier de Tsanfleuron4.13Grosser Aletsch (Jungfraufirn)	19 19 21 22 37 32 37 41 44 49 54 57 61
5	Velocity 5.1 Introduction 5.2 Glacier du Giétro 5.3 Glacier de Corbassière 5.4 Mattmark	63 63 64 67 70

6	The Swiss Glacier Inventory SGI2010	73
	6.1 Background	73
	6.2 Previous glacier inventories	73
	6.3 Mapping glacier outlines for the SGI2010	74
	6.4 The new SGI2010 data set	74
	6.5 Observed changes in area and number 1973-2010	74
п.	f	01
ке	rerences	81
Ac	knowledgements	84
Α	Remote Sensing	85
	A.1 Aerial photographs	85
В	Remarks on Individual Glaciers	88
С	Investigators	110
	C.1 Length Variation (2011)	110
	C.2 Mass Balance and Velocity	113

1 Introduction

Systematic and long-term records of glacier changes in Switzerland started in 1880 with annual length change measurements of selected glaciers. At that time these measurements were motivated by questions about past and future ice ages. In the meantime, the goals of the worldwide glacier monitoring programs have evolved and multiplied. Glacier change data are primarily necessary for investigations of the glacier-climate interactions. The data are also important for the assessment of water resources, sea level rise and natural hazards. Finally, the broad public manifests an increasing interest in glacier changes.

The main focus of the ongoing Swiss Glacier Monitoring Network is to collect the following data: (1) mass balance, (2) surface flow speed, (3) length variation, (4) glacier parameters (e.g. surface area) and (5) englacial temperature. The program for glacier monitoring in Switzerland (GLAMOS) has been adopted by the Cryospheric Commission in March 2007. A detailed description about the aims, current status and perspectives of the monitoring program was presented in chapter 1.1 of "The Swiss Glaciers" volume number 125/126.

The results of the Swiss glacier monitoring contribute also to the international efforts to document glacier fluctuations as part of global environmental monitoring initiatives of the Global Terrestrial Network for Glaciers (GTN-G) within the Global Terrestrial and Climate Observing System (GTOS/ GCOS) and are reported to the World Glacier Monitoring Service (WGMS).

This report is the new volume No. 131/132 in the series "The Swiss Glaciers" and presents the results of the two observational periods 2009/10 and 2010/11. It carries on the long tradition of yearbooks documenting monitored fluctuations of Swiss glaciers since 1880 (see page iv). Data and digital versions of the present and earlier volumes can be found at http://glaciology.ethz.ch/swiss-glaciers. Thanks to continuous efforts of many people, public and private organisations in Switzer-land, long time-series of data related to glacier changes do exist.

The present data-report expands the short overview of general outcomes published annually in German and French in the magazine "Die Alpen - Les Alpes" of the Swiss Alpine Club with detailed facts and figures.

2 Weather and Climate

In this section the weather and climate conditions for the two periods under review 2009/10 and 2010/11 are described. The focus is on the variables that are most relevant for glacier mass balance, namely temperature and precipitation. In general, glacier mass balance is largely determined by the amount of snow fall in winter and the temperature during summer. Additionally, particular climate conditions can have an important influence. High temperatures in April, May or June can reduce the winter snow pack rapidly and expose the much darker ice surface already in July. During July and August solar radiation receipts are very high and melting of the unprotected ice can reach extreme values. When these two factors are combined very negative mass balances like in the period 2002/03 are expected. On the other hand, snow fall down to low elevations (2000 m) during summer protects the glacier surface from melting and will lead to less negative mass balances. Precipitation that falls as rain influences the mass balance negatively.

We have selected the four high-elevation climate stations at Grand St-Bernard (2472 m), Jungfraujoch (3580 m), Säntis (2502 m) and Weissfluhjoch (2690 m) to illustrate the monthly anomalies in air temperature (Figure 2.1) and 15 stations (Airolo, Château-d'Oex, Disentis, Engelberg, Elm, Grand St-Bernard, Grimsel Hospiz, Montana, Lauterbrunnen, Säntis, Scuol, Sils-Maria, Weissfluhjoch, Zermatt) throughout all regions of the Swiss Alps for monthly anomalies in precipitation (Figure 2.2) in the two reporting periods. For the two parameters of annual precipitation and mean summer temperature, the long-term record since 1880 is shown in Figures 2.3 and 2.4 as a mean of 12 homogenized climate stations (Begert et al., 2005). The description of the weather conditions in the two reporting periods refer to the figures and the annual and monthly reports of the meteorological conditions by MeteoSwiss. Data are taken from different stations of the observational networks maintained by MeteoSwiss.

2.1 Weather and Climate in 2009/10

The first burst of winter weather occurred in mid-October with snow falling at elevations up to 1000 m. Due to further snowfalls, as early as mid-November a snow cover of at least 50 cm thickness lay at elevations over 2000 m, a critical location for glaciers. This generally does not occur before the end of November. Cold temperatures and on the whole low precipitation amounts characterized the further course of the winter. Only Engadine and the southern valleys of the Grisons profited in the form of above-average snow amounts from the repeated advection situations. There were no abundant snowfalls at distinctive northwest-oriented slopes. For this reason, at the end of

Figure 2.1: Mean monthly anomaly of temperature from the long-term climatic mean (period 1961-1990) for four selected stations of the MeteoSwiss network. Anomalies in the two reporting periods 2009/10 and 2010/11 are shown.

April snow depths proved to be slightly above average in Upper Engadine and the southern Grison valleys only, slightly below average on the remaining southern slopes of the Alps, and clearly below average on the north side of the Alps, as compared to the long-term average. In May a minor improvement in the situation was brought about by further advection from the south bringing large amounts of snow to the southern side of the Alps and the main alpine ridge. In addition, the cool and dull meteorological conditions contributed somewhat to a delay in the melt-out of the glaciers. During a heat wave in the first half of July, the zero degree line rose over a span of several days well above 4000 m, resulting in the sixth-hottest July on record since measurements began in 1864. Conditions were variable for the rest of the summer and autumn. In spite of many bursts of cold weather, the summer of 2010 clearly remained one with above-average warm temperatures (Figures 2.1 and 2.2).

Summertime temperatures were 0.9°C higher than the long-term mean (Figure 2.4). Positive deviations of approx. one degree have been common since the 1990s. On the other hand, precipitation amounts generally corresponded to the long term mean (Figure 2.3). On the whole it was the lack of precipitation in winter rather than the heat surplus in summer that had an unfavorable effect on the glacier mass balance. Since this surplus usually came in the form of liquid precipitation even at higher elevations, it did not lead to any significant accumulation and succeeded only in slowing down the melt rate to a minor extent.

2.2 Weather and Climate in 2010/11

As a result of an episode of winter conditions at the end of September, a closed snow cover formed relatively early in the season above 2000 m. Following further snowfalls at the end of November and in December, snow depths just slightly above average were recorded in almost the entire Swiss

Figure 2.2: Mean monthly anomaly of precipitation from the long-term climatic mean (period 1961-1990) for 15 selected stations of the MeteoSwiss network. Anomalies in the two reporting periods 2009/10 and 2010/11 are shown.

alpine region. All months from January to the end of April had low precipitation amounts and warm to very warm temperatures (Figures 2.1 and 2.2). Overall, below-average amounts of snow lay on the ground and there were no late episodes of a sudden burst of winter weather. The warm and dry weather continued into May, while snowfalls at high elevations in early June were able to some extent to slow down the rapid melting. The warmest spring since measurements began in 1864 was followed by a summer marked by variability and repeated cold air intrusions. The extensive period of high pressure at the end of August brought with it a heat wave and abundant sunshine. These warm and sunny conditions continued into September, resulting in a temperature surplus between May and September. With a clear precipitation deficit in the second half of winter, and predominantly variable conditions during the mid-summer months, the second measurement period very much resembled the first one.

Annual precipitation for 2010/11 was 17% below the long-term mean (Figure 2.3), whereas the summer temperatures (May to September 2011) were $+1.9^{\circ}$ C above average (Figure 2.4).

Figure 2.3: Anomalies of annual precipitation (hydrological year) from the mean value 1961-1990 in percentage for the period 1864-2011. The gray shaded area highlights the years of the current report.

Figure 2.4: Anomalies of mean summer air temperature (May-September) from the mean value 1961-1990 in degrees Celcius for the period 1864-2011. The gray shaded area highlights the years of the current report.

3 Length Variation

3.1 Introduction

Of the 121 glaciers registered in the observation network, 113 in the period 2009/10 and 114 in period 2010/11 were being actively observed (Figures 3.1, 3.2 and Table 3.1). The other glaciers (compare Table 3.1, remark f) have melted back drastically, and are often debris-covered, on one hand, with the result that it is simply not possible to carry out a proper survey at yearly intervals. On the other hand, a number of glaciers were observed only at irregular intervals, and produced measurement values that were rather imprecise, which does not justify preserving these figures in the charts and analyses.

During the two years under review, 2009/10 and 2010/11, Swiss glaciers suffered further losses in length. Most of the measurements are within the range of 0 to -30 m for both periods. This overall trend was overshadowed in both years by a few significantly high retreat values, which as in previous years could be traced to local influences, or refer to larger glaciers, and in some cases also pertain to a period of several years. They are usually also the result of a process extending over a longer period of time and thus are not unexpected.

3.2 Length Variations in 2009/10

Changes at the glacier front were determined for 95 of the 102 glaciers measured in the autumn. Of these, 87 were found to be in recession, 3 were advancing slightly, and for 5 there was no change in the glacier terminus position. All in all, the values extend from a retreat of 196 m at Gauligletscher to a slight advance of 14 m at Glacier du Trient. Nevertheless, most of the values lie between -1 and -25 meters.

The massive retreat of the Gauligletscher must be seen in the context of the lake encircling the glacier tongue, which serves to intensify and accelerate the melting.which has been underway for a number of years. Riedgletscher recorded an even greater retreat of 580 meters. This change occurred in the two-year measurement period following the summer of 2009 during which the glacier split and a detached mass of protruding debris-covered dead ice was formed.

In the meantime, the terminus of the Glacier du Trient is located on a steep slope. In the past years the glacier has retreated drastically and appears to be able to maintain its new position for

the time being. Under these conditions there is a possibility that the glacier tongue will advance slightly in certain years.

3.3 Length Variations in 2010/11

In the autumn of 2011, length changes were determined for 98 glaciers. Of these, 95 shortened, two did not change position, and only one glacer had a positive value. The values range from a retreat of 1300 m at Vadret da Roseg, to an advance at the terminus margin of 23 m at Glacier du Mont Durand. Approximately three-quarters of the measurement values lie between -1 and -30 meters.

The massive retreat of the Vadret da Roseg stems from a process that has been underway for decades. The glacier tongue, located in a valley basin, was fed previously by two inflows originating in the extensive firn area. The transition from firn area to glacier tongue occurs however at a steep section of terrain. The glacier has been thinning gradually in this area over the past ten years and as early as the summer of 2007 was no longer connected with the inflow from Piz Sella. In the summer of 2009 the main inflow also no longer reached as far as the tongue, which favored the formation of a debris-covered mass of dead ice in the valley basin. This ice mass was nourished then only by the occasional ice break-off or snow avalanches in winter. For this reason, the terminus of the active glacier shifted abruptly and substantially.

At the Glacier du Mont Durand, local changes at the glacier terminus, and not an advance due to abundant ice flow from the firn area, are responsible for the positive measurement values. Because the glacier is heavily covered with debris, the tongue melts at an very irregular rate. As a result, a large hollow formed over recent years and a mound of rock can now be seen. Diffusive ice flow of marginal ice masses most likely led to the advance of the margin in the previous summer.

Ct. b Length variation ^c Altitude ^d No. a Glacier Date of measurements (m) (m a.s.l.) (Day, Month) 2009/10 2010/11 2011 2009 2010 2011 Catchment area of the river Rhone (II) 1 e,f Rhone VS -3.2-50.62208.2 07.09. 20.09. 22.09. 2 ^{e,f} Mutt VS -17.0^{2a} 20.08. n 2655 04.10. n 3 ^{e,f} Gries VS -31.722.09. -23.92421.8 08.09. 21.09. 4 e,f Fiescher VS -24.7-41.91675 15.10. 29.10. 09.11. 5 e,f Grosser Aletsch VS -20.9-34.41590.2 07.09. 22.09. 28.09. VS 7 ^{e,f} Kaltwasser +4.7-37 2660 30.09. 01.10. 15.09. 173 ^e Seewjinen VS -7.72716.2 07.09. 20.09. 15.09. -6.510^{e,f} Schwarzberg VS -10.1-6.02659.2 07.09. 20.09. 15.09. 11 ^{e,f} Allalin VS -1.22639.2 07.09. 20.09. 15.09. -12.9174 ^e Hohlaub VS -4.2-4.92838.1 07.09. 20.09. 15.09. 12 ^e Kessjen VS -5.1-2.62868.2 07.09. 20.09. 15.09. 13 ^{e,f} Fee VS -6.4-23.52159 05.10. 11.10. 06.10. 14 ^{e,f} Gorner VS -20 -112180 15.10. 15.10. 17.09. -183 ^{13a} 15 ^{e,f} Zmutt 2238 10 VS n n 01.09 n 16 e,f Findelen -49.9 VS -48.42551.5 07.09. 20.09. 22.09. VS -580^{2a} 17 ^e Ried -6 2266 n 31.08. 02.10. 18 ^{e,f} Lang VS -28-22 2096 30.10. 15.10. 20.10. 19 e,f Turtmann VS -22.7 ^{6a} 2270 10 16.09. 29.09. n Х 20 ^e Brunegg (Turtmann) VS -99 ^{5a} -77.4 2500 10 16.09. 29.09. n 22 e,f Zinal VS -8.5 -162050 16.10. 22.10. 22.10. 23 ^{e,f} Moming VS -2.72580 16.10. 30.09. 30.09. -1124 ^{e,f} Moiry VS -32.5^{2a} 03.10. 12.10. -182400 n 25 f Ferpècle VS -23 -1215.10. 07.10. 00.00. Mont Miné VS -20.5-58.424.09. 07.10. 26 00.00. Arolla (Mont Collon) VS -24.701.10. 27 f -3824.09. 00.00. 28 f Tsidjiore Nouve VS -14.7-8.501.10. 00.00. 15.10. 29 ^{e,f} Cheillon VS -2.312.10. -3.62706 28.10. 27.09. 30^{e,f} En Darrey VS -32.5 Х 2510 28.10. 12.10. 27.09. -16.3^{2a} 31 ^f Grand Désert VS -23 2831 19.09. 22.09. n 32 f Mont Fort (Tortin) VS -6.5-23 2809 20.09. 20.09. 24.09. 33 e,f Tsanfleuron VS 24.09. n -8.32545 n n 34 ^e Otemma VS 04.09. 09.09. -37.4-15.42460 01.09. 35 ^e Mont Durand VS -24 +232380 30.08. 03.09. 06.09. VS 36 ^e Breney -35.4-49 2575 31.08. 05.09. 10.09. VS 37 ^e Giétro -32.9-24.82634.9 07.09. 22.09. 15.09.

3.4 Length Variations in 2009/10 and in 2010/11, Summary

The Swiss Glaciers 2009/10 and 2010/11

No. ^a	Glacier	Ct. ^b	Length v	ariation ^c	Altitude ^d	Date o	of measur	rements
			(n 2009/10	n) 2010/11	(m a.s.i.) 2011	(L 2009	2010 2010	2011
38 ^e	Corbassière	VS	-40.2	-64.2	2263.8	07.09.	22.09.	15.09.
39 ^{e,f}	Valsorey	VS	-21.4	-17.8	2429.5	04.10.	15.10.	11.08.
40 ^e	Tseudet	VS	-7.9	-7.2	2483.5	04.10.	15.10.	11.08.
41 ^e	Boveyre	VS	-18.8	-38.2	2680	09.10.	31.07.	08.09.
42 ^{e,f}	Saleina	VS	-25.5	-39.8	1825.3	29.09.	14.10.	18.10.
43 ^{e,f}	Trient	VS	+14	0	2075	11.09.	02.10.	01.10.
44 ^{e,f}	Paneyrosse	VD	-9.3	-7.7		15.09.	23.09.	14.09.
45 ^{e,f}	Grand Plan Névé	VD	-7.9	-8.4		10.09.	23.09.	15.09.
47 ^{e,f}	Sex Rouge	VD	n	-0.2^{-2a}		10.09.	n	05.10.
48 ^e	Prapio	VD	-9.0	-12.5	2547	09.09.	20.09.	01.10.
Catch	ment area of the rive	r Aare	(la)					
50 ^f	Oberaar	BE	n	n	2306.9 ⁰⁹	19.08.	n	n
51 ^f	Unteraar	BE	n	n	1930.3 ⁰⁹	19.08.	n	n
52 ^e	Gauli	BE	-196	-135	2130	18.09.	15.09.	06.09.
53 ^{e,f}	Stein	BE	-122	-155	1970	22.09.	21.09.	01.10.
54 ^e	Steinlimi	BE	-51	-28	2100	22.09.	21.09.	01.10.
55 ^{e,f}	Trift (Gadmen)	BE	-23.5	-25.2	1655.4	07.09.	20.09.	22.09.
57 ^{e,f}	Oberer Grindelwald	BE	Х	Х	1394.0 ⁰⁹	08.09.	23.10.	17.09.
58 ^{e,f}	Unterer Grindelwald	BE	Х	Х	1243.4	07.09.	21.09.	28.09.
59 ^e	Eiger	BE	-8.0^{2a}	-19	2330 ¹⁰	n	06.10.	15.09.
60 ^e	Tschingel	BE	-16.2	-21.1	2270	15.09.	14.09.	16.09.
61 ^f	Gamchi	BE	-15.5	-18.8	2050	03.10.	09.10.	30.09.
109 ^e	Alpetli (Kanderfirn)	BE	-24.8	-33.1	2280	12.09.	11.09.	10.09.
62 ^{e,f}	Schwarz	VS	-2.8	-5.6	2266	23.09.	04.09.	03.09.
63	Lämmern	VS	-12	-20	2550	11.09.	22.09.	10.09.
64 ^{e,f}	Blüemlisalp	BE	-15.3	-24.5	2280	16.09.	21.09.	16.09.
111 ^e	Ammerten	BE	-1.3	-3.5	2350	11.10.	03.10.	03.09.
112 ^e	Dungel	BE	-2.4	n	2607 ¹⁰	08.08.	11.09.	n
113 ^e	Gelten	BE	х	n	2499 ¹⁰	09.09.	12.09.	n
Catch	ment area of the rive	r Reuss	(lb)					
66 ^{e,f}	Tiefen	UR	-16.4	-26.9	2520	10.09.	19.09.	10.09.
67 ^{e,f}	Sankt Anna	UR	-13.3	-9.1	2585	26.09.	11.09.	01.10.
68 ^{e,f}	Kehlen	UR	-30.7	-28.3	2240	23.09.	20.09.	22.09.
69 ^e	Rotfirn (Nord)	UR	-24.1	-19.2	2050	23.09.	20.09.	22.09.
70 ^{e,f}	Damma	UR	х	-41 ^{5a}	2370	n	22.09.	23.09.
71 ^{e,f}	Wallenbur	UR	-11.8	-18	2261	07.10.	07.10.	04.10.
73 ^{e,f}	Hüfi	UR	0	х	1800	30.10.	06.10.	31.10.

NL 0		C . h			A 1. 1. 1		<i>c</i>	
No. ^a	Glacier	Ct. □	Length v	ariation ^c	Altitude ^a	Date o	Date of measurements	
			(n	1)	(m a.s.l.)	([ay, Mon ⁻	th)
			2009/10	2010/11	2011	2009	2010	2011
74 ^{e,f}	Griess	UR	-2.0	-9.4	2224	09.10.	22.09.	15.09.
75 ^{e,f}	Firnalpeli (Ost)	OW	-22.9	-11.8	2235	24.08.	23.09.	02.10.
76 ^{e,f}	Griessen	OW	-4.3	-11.4	2540	25.08.	14.10.	03.10.
Catch	ment area of the river	Linth	/ Limmat	(lc)				
77 ^{e,f}	Biferten	GL	-10.6	-10.9	1969.8	01.11.	11.09.	03.09.
78 ^e	Limmern	GL	-2.0	-3.3	2290	24.09.	09.10.	13.08.
114 ^e	Plattalva	GL	-18.9	-19.3	2590	25.09.	10.10.	12.08.
79 ^{e,f}	Sulz	GL	-1.6	-2.6	1791	06.10.	31.08.	29.09.
80 ^{e,f}	Glärnisch	GL	-8.6	-7.7	2344.6	26.09.	12.09.	24.09.
81 ^{e,f}	Pizol	SG	-2.9	-29.1	2595	24.09.	22.09.	26.09.
Catch	ment area of the river	Rhine	/ Lake Co	onstance (I	d)			
82 ^{e,f}	Lavaz	GR	-14.4 ^{2a}	-25	2395	n	23.08.	13.09.
83 ^{e,f}	Punteglias	GR	-12.5 ^{2a}	-27.8	2370	n	12.10.	24.08.
84 ^{e,f}	Lenta	GR	-14.7	-33.4	2380	07.09.	03.09.	06.09.
85 ^{e,f}	Vorab	GR	-8.6	-23.0	2650	22.09.	17.09.	29.09.
86 ^{e,f}	Paradies	GR	+0.4	-18.6	2698	17.09.	16.09.	16.09.
87 ^e	Suretta	GR	+0.7	-2.0	2589	17.09.	23.09.	16.09.
88 ^{e,f}	Porchabella	GR	-15.6	-18.7	2715	07.10.	07.10.	03.10.
115 ^e	Scaletta	GR	-4.4	-5.9	2598	01.09.	26.08.	23.08.
89 ^{e,f}	Verstankla	GR	-10	-19.9	2450	01.09.	16.09.	06.09.
90 ^e	Silvretta	GR	-7.7	-11.8	2466.8	09.09.	22.09.	16.09.
91 ^{e,f}	Sardona	SG	+1.7	-14.6	2450	28.08.	24.09.	27.09.
_			-					
Catch	ment area of the river	Inn (\	/)		· 00			
92 ^{e,†}	Roseg	GR	0 -	-1305	2160 09	14.09.	13.10.	25.11.
93 e	I schierva	GR	-20.7	-29.3	2262 09	14.09.	13.10.	13.09.
94 ^{e,†}	Morteratsch	GR	-50.6	-44.9	2110	14.09.	13.10.	13.09.
95 °	Calderas	GR	-12.6	-18.0	2801	27.08.	17.08.	28.07.
96 ^{e,f}	Tiatscha	GR	-7.0	-1.6	2650 05	20.08.	27.08.	19.08.
97 ^e	Sesvenna	GR	-8.4	-8.4	2760 ⁰⁷	19.08.	26.08.	23.08.
98 ^{e,f}	Lischana	GR	Х	-7.9 ^{2a}	2774 ⁰⁶	28.08.	14.09.	12.08.
- -	.		(
Catch	ment area of the river	Adda	(IV)	10.30	0500 00			
99 e	Cambrena	GR	n A DT	-42 ^{3a}	2530 08	n	n	21.10.
100 ^r	Palü	GR	0 ^{2a}	-13.4	2620	n	07.10.	29.09.
101	Paradisino (Campo)	GR	-40 ^{-2a}	Х	2770	n	08.10.	30.10.
102 ^r	Forno	GR	-27.6	-26.2	2260 09	21.09.	23.08.	19.08.
116	Albigna	GR	-28.4	-17.3		28.07.	20.08.	30.08.

No. ^a	Glacier	Ct. ^b	Length va	Length variation ^c		Date o	Date of measurements	
			(m	ר)	(m a.s.l.)	(D	(Day, Month)	
			2009/10	2010/11	2011	2009	2010	2011
Catch	ment area of the river	Ticino) (III)					
120 ^e	Corno	ΤI	-6.5	-3.0	2608.3	08.09.	26.08.	29.08.
117 ^e	Valleggia	ΤI	-7.9	-4.3	2422.5	02.09.	15.09.	07.09.
118 ^e	Val Torta	ΤI	n	-44.1 ^{2a}	2525.8	23.09.	n	06.09.
352 ^e	Croslina	ΤI	-1.1	-4.1	2718.0	10.09.	02.09.	14.09.
103 ^{e,f}	Bresciana	ΤI	-6.0	-13.0	2941.7	31.08.	22.09.	12.09.
353 ^e	Camadra	ΤI	-2.4^{4a}	-5.6	2924		21.09.	12.09.
119 ^e	Cavagnoli	ΤI	-9.3	-24.4	2539.0	28.09.	14.09.	21.09.
104 ^{e,f}	Basòdino	ΤI	-6.8	-19.2	2589.3	29.09.	13.09.	22.09.
105 ^{e,f}	Rossboden	VS	Х	Х	1930 ⁰⁴	n	13.10.	12.10.

The Swiss Glaciers 2009/10 and 2010/11

Legend

+	advancing	Х	value	not	determined

- st stationary, $\pm 1 \text{ m}$ n not observed
- retreating
 sn snow covered
- a Identification number of the glacier in the observation network.
- b If a specific glacier is situated in more than one canton, the canton indicated in the table is the one where the observed glacier tongue lies.
- c If the value given relates to more than one year, the number of years is indicated as follows: $-23^{4a} =$ Decrease of 23 meters within 4 years.
- d If the altitude of the glacier tongue is not measured in 2011, the year of the last measurement is indicated: $2522^{99} = 2522$ m above sea level, measured in the year 1999.
- e Compare Appendix B: Remarks on individual glaciers.
- f Glacier with nearly complete data series since the beginning of the measurements at the end of the 19th century and one of the 73 glaciers selected in Figures 3.3 and 3.4.

Figure 3.1: Observed glaciers in fall 2010.

Figure 3.2: Observed glaciers in fall 2011.

3.5 Length Variations - Statistics for 1880-2011

The long-term development of glaciers in Switzerland is illustrated by taking a selected sample from the Swiss glacier network (Figures 3.3 and 3.4), and the cumulative glacier length variations which have been classified according to length (Figures 3.5 - 3.8).

The dynamic response to climatic forcing of glaciers with variable geometry involves striking differences in the recorded curves (Figures 3.4 and 3.5 - 3.8) (Hoelzle et al., 2003). Such differences reflect the considerable effects of size-dependent reaction of the delayed tongue response with respect to the undelayed input (mass balance) signal. As a consequence, the overview figure of annual length-change data presented here as annual numbers or percentages of advancing and retreating glaciers should be interpreted carefully.

We also present absolute numbers, in order to avoid having a glacier sample whose scope changes annually, not all glaciers were included in Figures 3.3 and 3.4. From the entire dataset, 73 glaciers were selected as a sample with nearly complete series since the beginning of the measurements at the end of the 19th century. In Chapter 3.4, these 73 glaciers are indicated by a footnote f. The measured annual values are assigned to three classes: advancing, stationary and retreating. Figure 3.3 presents absolute numbers and percentages. The sample is dominated by medium-sized glaciers (length between 1 to 5 km) with a typical response time in the order of decades. The periods of advance, such as those in the 1910s and the 1970s to 1980s, can be seen clearly. For the purpose of intercomparison, values of cumulative length change are presented with respect to size categories chosen in a way to optimally reflect common characteristics of the tongue-reaction signal. Figure

Figure 3.3: Yearly classification of glacier length behaviour (advancing, stationary and retreating) of 73 selected glaciers.

3. Length Variation

3.4 shows the annual and individual length change of all 73 selected glaciers sorted for size. It is well recognized that large glaciers, such as Grosser Aletschgletscher, show continuous retreat since 1880, in contrast to the smaller glaciers such as Pizolgletscher, which has highly variable behavior.

Figure 3.4: Individual yearly pattern of the same 73 selected glaciers (displayed in the descending order of actual glacier length).

Figure 3.5: Large valley glaciers with a length of more than 10 km. The gray shaded area highlights the years of the current report.

Figure 3.6: Mountain glaciers with a length of 5 to 10 km. The gray shaded area highlights the years of the current report.

Figure 3.7: Small mountain glaciers with a length of 1 to 5 km. The gray shaded area highlights the years of the current report.

Figure 3.8: Very small cirque glaciers with a length of less than 1 km. The gray shaded area highlights the years of the current report.

The Swiss Glaciers 2009/10 and 2010/11

Gauligletscher (September 2010, top) and Vadret da Roseg (September 2011, bottom) – both glaciers experienced a massive retreat in the observation periods of this report (Photos: R. Straub and G. Bott)

4 Mass Balance

4.1 Introduction, cumulative mean specific mass balances

Detailed mass balance data were collected using the glaciological method for Ghiacciaio del Basòdino, Findelengletscher, Griesgletscher, Pizolgletscher, Glacier de la Plaine Morte, Rhonegletscher, Silvrettagletscher and Glacier de Tsanfleuron in Switzerland. In addition to these investigations aiming at the determination of the glacier-wide mass balance distribution, individual point measurements of mass balance were taken at Claridenfirn, Jungfraufirn (Grosser Aletschgletscher), Glacier du Giétro and Glacier de Corbassière (cf. Chapter 5), as well as in the Mattmark region (Allalin, Schwarzberg, Chapter 5). In Figure 4.1 the location within Switzerland of all these glaciers is shown.

Figure 4.1: Investigated glaciers for mass balance with the focus on spatial distribution and analysis of mean specific seasonal components of mass balance (dark blue) or point measurements (light blue).

Figure 4.2: Cumulative mean specific annual balance over the whole observation period for the glaciers Silvretta, Rhone, Pizol, Gries, Findelen and Basòdino. The gray shaded area highlights the years of the current report.

The mass balance measurements at stakes, in snow pits and extensive snow probing in spring were used to calculate the mean specific components of mass balance following the methods described in Huss et al. (2009). Extrapolation from individual measurements to the entire glacier surface was performed using a mass balance model including the most important processes governing glacier mass balance distribution. The procedure is divided into two steps:

- (1) The model is tuned such that both the measurements of winter accumulation and summer ablation are matched optimally over the periods defined by the exact dates of the in-situ measurements which are reported for the years of the current report. This allows extrapolation of mass balance based on a physical representation of the spatial variability, as well as the calculation of mass balance over fixed time periods (e.g. the hydrological year).
- (2) A periodical final reanalysis and homogenisation with independently derived ice volume changes is reported separately in five to ten year intervals after evaluation.

The cumulative mean specific winter and annual balances of the glaciers with extensive observation series are presented in Table 4.1. Numbers for Adlergletscher as a former tributary of Findelengletscher has been evaluated separately but detailed figures are presented together with Findelengletscher. The long-term trends are very well recognizable for the Griesgletscher and Silvrettagletscher with long time-series (Figure 4.2). Notably, the accelerated mass loss since the mid-1980s is remarkable, as are the balanced mass budgets recorded in the 1960s and 70s. The

Glacier	No.	period	area (km²)	B _w (mm w.e.)	B _a (mm w.e.)	ELA (m a.s.l.)	AAR (%)
Basòdino	104	2009/10	1.961	1687	-491	2985	24
		2010/11	1.842	1080	-988	3135	0
Findelen	16	2009/10	13.042	728	-651	3325	50
		2010/11	13.042	866	-913	3385	40
Adler	16	2009/10	2.229	529	-397	3535	41
		2010/11	2.229	615	-479	3535	42
Gries	3	2009/10	4.973	1649	-1143	3055	18
		2010/11	4.834	958	-1802	3175	2
Pizol	81	2009/10	0.081	1180	-859	2772	2
		2010/11	0.081	1063	-2023	2792	0
Plaine Morte	65	2009/10	7.878	1347	-822	2795	5
		2010/11	7.878	975	-2271	2915	0
Rhone	1	2009/10	15.808	1287	-391	2915	56
		2010/11	15.808	1135	-1545	3095	32
Silvretta	90	2009/10	2.789	1363	-417	2865	33
		2010/11	2.741	1030	-1392	3025	1
Tsanfleuron	33	2009/10	2.752	1075	-917	2924	0
		2010/11	2.752	1175	-2336	2957	0

Table 4.1: Summary table with area, mean specific winter and annual balance, ELA and AAR for the exact measurement periods 2009/10 and 2010/11.

point measurements of the mass balance are of particular significance with regard to answering questions related to climate change (Ohmura et al., 2007; Huss and Bauder, 2009). The four existing long-term time series (Claridenfirn, Grosser Aletschgletscher, Silvrettagletscher) start in the 1910s and cover almost the entire 20th century. Mass balance data of the present report have also been communicated to the World Glacier Monitoring Service (WGMS) as a contribution to the efforts of international glacier monitoring (WGMS, 2013).

4.2 Mass Balance in 2009/10

The glacier-wide mass balance in seasonal resolution was determined by measuring snow accumulation during winter and melting in summer for these 8 glaciers: Basòdino, Findelen, Gries, Pizol, Plaine Morte, Rhone, Silvretta and Tsanfleuron. In comparison with measurements from the past several years, both the snow accumulation and the melting figures were quite average. All of the glaciers had a negative mass balance. The values fluctuated between a loss of approx. 0.4 m water equivalent at Silvretta and Rhone glaciers, to well over a meter at the Gries glacier. The tendency toward retreat recorded in the last few years is clearly persisting.

Melting was below average in summer at both the Pizol and the Silvretta glaciers at the northeast side of the Alps. These two glaciers most likely profited the most from a continuous period of variable weather conditions with repeated snowfalls. In contrast to the other glaciers investigated,

at these two the new snow remained in place longer, thus diminishing the melt rate. These results are confirmed by point measurements at the Claridenfirn and the Jungfraufirn of the Grosser Aletschgletscher.

4.3 Mass Balance in 2010/11

These 8 glaciers were investigated during this period as well with regard to their mass balance. The very slight amounts of snow in the winter of 2010/11 also led to clearly below-average snow accumulation on the glaciers. In spite of periods of unstable weather conditions, melting was intensive during summer, and all of these glaciers registered an extremely negative mass balance. The values varied from a loss of approx. 1 m at Findelengletscher and Ghiacciaio del Basòdino to about 2 m at the other glaciers, thus continuing the trend of recent years to massive loss of volume.

For the 2010/11 period, the negative mass balance can be traced to the combination of minimal snow accumulation during the winter and the early onset of the melting season in the very warm spring. This is in contrast to previous years in which intensive melting during the summer was above all responsible for negative mass balance. In the 2010/11 period it was predominantly the glaciers with catchment areas at high elevations which profited from greater snowfall amounts in May and June, such as the Findelen and Rhone glaciers. At lower-lying areas, precipation fell in the form of rain. Point measurements at the Claridenfirn and at the Jungfraufirn of the Grosser Aletschgletscher are consistent with these results.

Glacier de la Plaine Morte in August 2011 (Photo: M. Huss)

4.4 Ghiacciaio del Basòdino

Introduction

Ghiacciaio del Basòdino is a small north-east facing temperate mountain glacier in the southern Swiss Alps. The small individual branch descending to the north with a separate tongue is not considered part of the glacier and not included in the mass balance determination. The main branch covers an area of 2.2 km² and extends from 2530 to 3192 m a.s.l. Detailed mass balance investigations are being carried out since 1990. Determination of volumetric changes in decadal resolution reach further back to 1929 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1929, 1949, 1971, 1985, 1991, 2002 and 2008.

Figure 4.3: Surface topography and observational network of the Ghiacciaio del Basòdino.

Investigations in 2009/10

The measurement period extended from 10th September 2009 to 11th September 2010 with a field visit in spring on 20th May 2010. Field visits on July 25th and August 21st 2010 provided additional measurements with observations of the gradual seasonal evolution. In September 2010, winter snow accumulation remained only at higher elevations. Snow depth samples were collected at about 70 locations during the spring measurement period and supplemented by a density profile from the central sector of the glacier.

Investigations in 2010/11

The measurement period was from 11th September 2010 to 6th September 2011 with a field visit in spring on 5th May 2011. Again snow depth was sampled at about 70 locations distributed over the entire glacier with a density profile at the center. Snow drift was greater than usual and re-deposited to some extent at the eastern part. Moderate melt rates occurred until the end of July. During the warm month of August high melt rates were recorded, resulting in the main contribution the total annual ablation.

Figure 4.4: Ghiacciaio del Basòdino - Mean specific annual balance (bars) and cumulative annual balance for the period 1991-2011.

Altitude	2009/1 area	0 <u>b</u> w	ba	2010/1 area	.1	ba
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2500 - 2600	0.028	1860	-1567	0.010	1100	-2156
2600 - 2700	0.194	1838	-1189	0.141	1135	-1797
2700 - 2800	0.384	1723	-973	0.360	1134	-1601
2800 - 2900	0.441	1668	-722	0.429	1099	-1007
2900 - 3000	0.534	1704	20	0.528	1109	-576
3000 - 3100	0.315	1607	-44	0.314	974	-644
3100 - 3200	0.064	1322	108	0.059	798	-503
2500 - 3200	1.961	1687	-491	1.842	1080	-988

Table 4.2: Ghiacciaio del Basòdino - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

 Table 4.3: Ghiacciaio del Basòdino - Individual stake measurements of winter and annual balance.

stake		period		coordinates	mass ba	alance
	start	spring	end		b _w	ba
				(m / m / m a.s.l.)	(mm \	w.e.)
2	10.09.2009	20.05.2010	11.09.2010	680210 / 141446 / 2721	1346	-1700
3	10.09.2009	20.05.2010	11.09.2010	680100 / 141450 / 2803	1600	-1280
4	10.09.2009	20.05.2010	11.09.2010	680061 / 141294 / 2819	1365	-1360
6	10.09.2009	20.05.2010	11.09.2010	679650 / 141500 / 2840	1540	-1336
8	10.09.2009	20.05.2010	11.09.2010	679500 / 140800 / 3050	1716	240
9	10.09.2009	20.05.2010	11.09.2010	680557 / 141167 / 2758	1501	-1275
10	10.09.2009	20.05.2010	11.09.2010	681000 / 141130 / 2689	1813	-800
11	10.09.2009	20.05.2010	11.09.2010	681336 / 141054 / 2610	2300	-1020
12	10.09.2009	20.05.2010	11.09.2010	679590 / 140791 / 3052	1560	210
14	10.09.2009	20.05.2010	11.09.2010	679983 / 141017 / 2904	1521	-336
15	10.09.2009	20.05.2010	11.09.2010	679391 / 140978 / 3040	1716	-420
16	10.09.2009		11.09.2010	679656 / 141500 / 2850		-1336
2	11.09.2010	05.05.2011	06.09.2011	680210 / 141446 / 2721	1036	-2550
6	11.09.2010	05.05.2011	06.09.2011	679650 / 141500 / 2840	944	-1600
8	11.09.2010	05.05.2011	06.09.2011	679610 / 140796 / 3050	1007	-490
9	11.09.2010	05.05.2011	06.09.2011	680557 / 141167 / 2758	1073	-1615
10	11.09.2010	05.05.2011	06.09.2011	681000 / 141130 / 2689	1332	-1640
11	11.09.2010	05.05.2011	06.09.2011	681336 / 141054 / 2610	1110	-2253
12	11.09.2010	05.05.2011	06.09.2011	679781 / 140828 / 2990	875	-910
14	11.09.2010	05.05.2011	06.09.2011	679983 / 141017 / 2904	925	-798
15	11.09.2010	05.05.2011	06.09.2011	679391 / 140978 / 3040	858	-644

Figure 4.5: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

Figure 4.6: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.5 Findelengletscher

Introduction

Findelengletscher (13.0 km²) and its former tributary Adlergletscher (2.0 km²) are located in the southern Valais in the Zermatt area. The two glaciers cover an elevation range from 2560 m a.s.l. to 4110 m a.s.l.. Findelengletscher is west-facing and is characterized by gently-sloping highelevation accumulation basins and a comparably narrow glacier tongue. The Findelengletscher region is relatively dry with equilibrium line altitudes being among the highest in the Alps. Mass balance measurements on Findelengletscher were initiated in fall 2004 and the observational network was extended to Adlergletscher one year later (Machguth, 2008).

Figure 4.7: Surface topography and observational network on Findelengletscher and the former tributary Adlergletscher.

Investigations in 2009/10

Winter mass balance of Findelengletscher and Adlergletscher was determined in a two-day campaign on 10./11.4.2010. Snow probings were obtained for 462 locations and snow density was measured in totally 10 snow pits distributed over the entire elevation range of the glacier. In addition, a

The Swiss Glaciers 2009/10 and 2010/11

survey with a helicopter-borne ground penetrating radar system to record snow depth distribution was performed covering profiles with a length of about 12 km (Sold et al., 2013). Simultaneously, a high-resolution DEM of the snow surface was acquired with an air-borne LiDAR (Joerg et al., 2012). In April 2010, an automatic camera overlooking the entire glacier was installed which can henceforth be used for the remote determination of sub-seasonal mass balance (Huss et al., 2013). All stakes were visited and re-installed on 29.9.2010. The annual mass balance for the measurement period since 6.10.2009 was determined for 12 locations on Findelengletscher, and three on Adlergletscher. Snow density was measured in two snow pits. At the same date flights for another LiDAR DEM were conducted allowing the calculation of glacier volume change at seasonal resolution since fall 2009 (Joerg et al., 2012).

Table 4.4: Findelengletscher - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2009/10)		2010/11	L	
	area	b _w	ba	area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2500 - 2600	0.081	303	-6793	0.081	246	-8198
2600 - 2700	0.309	416	-5611	0.309	404	-7304
2700 - 2800	0.239	400	-5029	0.239	415	-5702
2800 - 2900	0.354	508	-3416	0.354	567	-3862
2900 - 3000	0.593	542	-2800	0.593	622	-2976
3000 - 3100	0.982	598	-2276	0.982	702	-2281
3100 - 3200	1.737	749	-1152	1.737	893	-1455
3200 - 3300	1.835	751	-355	1.835	901	-798
3300 - 3400	1.945	830	185	1.945	1000	-88
3400 - 3500	2.357	872	475	2.357	1050	311
3500 - 3600	1.609	773	518	1.609	930	463
3600 - 3700	0.439	704	583	0.439	848	582
3700 - 3800	0.300	462	301	0.300	556	298
3800 - 3900	0.252	433	343	0.252	522	346
3900 - 4000	0.011	349	319	0.011	420	278
2500 - 4000	13.042	728	-651	13.042	866	-913

Investigations in 2010/11

The winter survey was performed on 11.4.2010. In total, 377 snow probings distributed over the entire surface of Findelen- and Adlergletscher were obtained, and snow density was measured in four snow pits. Snow depths were below average and in the lower parts of the glacier, snow melt was already significant. An additional snow depth survey was conducted on 15.6.2011 above the equilibrium line of Findelengletscher. 22 km of traces with a helicopter-borne ground penetrating radar were complemented with 145 snow probings and snow density measurements in three snow

pits. Due to early melt-out of the lower parts of Findelengletscher, ablation during the summer months was high – almost 10 meters of ice melt were recorded close to the terminus. On 29.9.2011 all measurement sites were visited. Mass balance was determined at 13 stakes on Findelengletscher and at three stakes on Adlergletscher. Accumulation only occurred in the uppermost regions of the glacier and firn density was measured in one snow pit. The second accumulation stake experienced slightly negative mass balance.

Altitude	2009/10			2010/1	2010/11		
	area	b _w	b _a	area	b _w	b _a	
(m a.s.l.)	(km ²)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)	
2900 - 3000	0.007	463	-3134	0.007	529	-4582	
3000 - 3100	0.090	523	-2377	0.090	601	-3143	
3100 - 3200	0.121	573	-1889	0.121	664	-2156	
3200 - 3300	0.253	572	-1382	0.253	665	-1713	
3300 - 3400	0.420	566	-749	0.420	659	-988	
3400 - 3500	0.319	527	-304	0.319	614	-368	
3500 - 3600	0.278	537	136	0.278	625	194	
3600 - 3700	0.297	443	141	0.297	516	245	
3700 - 3800	0.239	568	617	0.239	662	815	
3800 - 3900	0.111	486	611	0.111	566	813	
3900 - 4000	0.069	415	543	0.069	483	723	
4000 - 4100	0.019	343	469	0.019	400	604	
4100 - 4200	0.004	315	455	0.004	367	580	
2900 - 4200	2.227	529	-397	2.227	615	-479	

Table 4.5: Adlergletscher - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.
stake		period		coordinates	mass balance		
Stance	start	spring	end	coordinates	h	b.	
	otart	opinig	0.114	(m / m / m a.s.l.)	(mm \	v.e.)	
F1	06 10 2009	10.04.2010	29.09.2010	629947 / 95564 / 2585	290	_6920	
F12	06 10 2009	10.04.2010	29.09.2010	629988 / 95430 / 2580	290	-7010	
F2	06.10.2009	10.04.2010	29.09.2010	630318 / 95450 / 2624	270	-5970	
F31	06.10.2009	10.04.2010	29.09.2010	630905 / 95434 / 2695	310	-5710	
F32	06.10.2009	10.04.2010	29.09.2010	630994 / 95228 / 2708	280	-5910	
F4	06.10.2009	10.04.2010	29.09.2010	631531 / 95372 / 2806	470	-4160	
F5	06.10.2009	10.04.2010	29.09.2010	632186 / 95034 / 2928	630	-2670	
F7	06.10.2009	10.04.2010	29.09.2010	632531 / 94316 / 3040	700	-2120	
F8	06.10.2009	10.04.2010	29.09.2010	633320 / 93841 / 3123	830	-1220	
F81	06.10.2009	10.04.2010	29.09.2010	633435 / 94529 / 3159	550	-1700	
F82	06.10.2009	10.04.2010	29.09.2010	632557 / 93740 / 3088	580	-1700	
F10	06.10.2009	10.04.2010	29.09.2010	635094 / 93920 / 3345	940	350	
A1	06.10.2009	10.04.2010	29.09.2010	632356 / 95512 / 3038	380	-3070	
A2	06.10.2009	10.04.2010	29.09.2010	632533 / 95501 / 3082	520	-2240	
A3	06.10.2009	10.04.2010	29.09.2010	632715 / 95542 / 3140	480	-2460	
F1	29.09.2010	11.04.2011	29.09.2011	629998 / 95563 / 2592	220	-8640	
F2	29.09.2010	11.04.2011	29.09.2011	630323 / 95447 / 2624	270	-7690	
F31	29.09.2010	11.04.2011	29.09.2011	630911 / 95431 / 2695	410	-5820	
F32	29.09.2010	11.04.2011	29.09.2011	631009 / 95274 / 2708	260	-6770	
F4	29.09.2010	11.04.2011	29.09.2011	631530 / 95375 / 2806	400	-4900	
F5	29.09.2010	11.04.2011	29.09.2011	632190 / 95033 / 2932	630	-2820	
F6	29.09.2010	11.04.2011	29.09.2011	632418 / 94974 / 2967	600	-3360	
F7	29.09.2010	11.04.2011	29.09.2011	632474 / 94375 / 3037	710	-2400	
F8	29.09.2010	11.04.2011	29.09.2011	633282 / 93867 / 3119	830	-1610	
F81	29.09.2010	11.04.2011	29.09.2011	633396 / 94526 / 3156	530	-2130	
F82	29.09.2010	11.04.2011	29.09.2011	632550 / 93728 / 3090	860	-2090	
F10	29.09.2010	11.04.2011	29.09.2011	635015 / 93958 / 3338	1010	-100	
F11	29.09.2010	11.04.2011	29.09.2011	634134 / 92343 / 3449	990	940	
A1	29.09.2010	11.04.2011	29.09.2011	632343 / 95511 / 3038	800	-4140	
A2	29.09.2010	11.04.2011	29.09.2011	632515 / 95499 / 3082	580	-2850	
A3	29.09.2010	11.04.2011	29.09.2011	632687 / 95540 / 3124	710	-2640	

Table 4.6: Findelengletscher and Adlergletscher - Individual stake measurements of winter and annual balance.

Figure 4.8: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

4.6 Griesgletscher (Aegina)

Introduction

Griesgletscher is a temperate valley glacier located in the central Swiss Alps. The glacier covers an area of 4.97 km² flowing in north-east direction from 3374 m a.s.l. down to 2415 m a.s.l. Mass balance measurements started in 1961 in connection with the construction of a reservoir for hydropower production. Determination of volumetric changes in decadal resolution reach further back to 1884 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1884, 1923, 1961, 1967, 1979, 1986, 1991, 1998, 2003 and 2007. Huss et al. (2009) reanalyzed and homogenized the seasonal stake data and ice volume changes for the period 1961-2007. Results of the mean specific winter and annual balance with associated area, ELA and AAR values for comparable fixed time periods have been reported in Section 4.9 of volume 125/126.

Figure 4.9: Surface topography and observational network of the Griesgletscher.

Figure 4.10: Griesgletscher - Mean specific annual balance (bars) and cumulative annual balance for the period 1961-2011.

Investigations in 2009/10

The measurement period extended from 6th September 2009 to 4th September 2010 with a field visit in spring on 18th May 2010. Snow depth samples were collected at 58 locations and supplemented by two density profiles obtained by firn drilling on the tongue and in the upper area. The melt extent at the end of the summer covered almost the entire surface area, leaving only a few marginal firn patches.

Investigations in 2010/11

The measurement period extended from 4th September 2010 to 8th September 2011 with a field visit in spring on 19th April 2011. Snow depth was sampled at 26 locations and the density was determined at two locations using a firn drill. The melt-out at the end of the summer extended over almost the entire surface area with some marginal firn patches left in the higher region.

Table 4.7: Griesgletscher - Specific winter and annual balance versus altitude
in the two periods $2009/10$ and $2010/11$ evaluated for the exact
measurement period defined by the dates of field survey.

Altitude	2009/1	0		2010/1	.1	
	area	b _w	ba	area	b _w	ba
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2400 - 2500	0.154	1210	-3707	0.164	808	-4522
2500 - 2600	0.765	1247	-3140	0.731	747	-3813
2600 - 2700	0.318	1343	-2382	0.237	975	-2706
2700 - 2800	0.342	1678	-1553	0.363	982	-1837
2800 - 2900	0.609	1728	-1252	0.636	916	-1733
2900 - 3000	0.953	1726	-733	1.005	954	-1456
3000 - 3100	1.484	1859	-60	1.421	1081	-904
3100 - 3200	0.263	1879	450	0.206	1121	-67
3200 - 3300	0.082	1336	120	0.071	789	-208
3300 - 3400	0.004	816	-115	0.001	508	-206
2400 - 3400	4.973	1649	-1143	4.834	958	-1802

Griesgletscher on the day of the field survey in September 2010 (Photo: F. Funk-Salami)

stake		period		coordinates	mass ba	mass balance	
	start	spring	end		b _w	ba	
				(m / m / m a.s.l.)	(mm v	w.e.)	
1	06.09.2009	18.05.2010	04.09.2010	667479 / 142824 / 3040	1750	-243	
2	06.09.2009	18.05.2010	04.09.2010	667538 / 142662 / 3035	1850	-162	
3	06.09.2009	18.05.2010	04.09.2010	667601 / 142554 / 3038	1820	-9	
4	06.09.2009	18.05.2010	04.09.2010	667907 / 143037 / 2998	1700	-450	
5	06.09.2009	18.05.2010	04.09.2010	668064 / 142909 / 3000	1700	-288	
6	06.09.2009	18.05.2010	04.09.2010	668347 / 143283 / 2945	1450	-1431	
7	06.09.2009	18.05.2010	04.09.2010	668430 / 143120 / 2945	1650	-837	
8	06.09.2009	18.05.2010	04.09.2010	668792 / 143398 / 2893	1700	-1692	
9	06.09.2009	18.05.2010	04.09.2010	668956 / 143294 / 2882	1750	-1107	
10	06.09.2009	18.05.2010	04.09.2010	669377 / 143567 / 2777	1800	-1206	
11	05.09.2009	18.05.2010	03.09.2010	669349 / 143893 / 2686	1450	-2340	
12	05.09.2009	18.05.2010	03.09.2010	669258 / 144204 / 2624	1350	-2754	
13	05.09.2009	18.05.2010	03.09.2010	669370 / 144182 / 2619	1120	-2790	
14	05.09.2009	18.05.2010	03.09.2010	669654 / 144510 / 2578	1270	-3105	
15	05.09.2009	18.05.2010	03.09.2010	669670 / 144386 / 2574	1250	-3492	
16	05.09.2009	18.05.2010	03.09.2010	670075 / 144849 / 2549	1170	-3231	
17	05.09.2009	18.05.2010	03.09.2010	670160 / 144714 / 2544	1320	-3276	
18	05.09.2009	18.05.2010	03.09.2010	670349 / 145008 / 2513	1370	-3987	
19	05.09.2009	18.05.2010	03.09.2010	670486 / 144828 / 2495	1200	-3636	
1	04.09.2010	19.04.2011	08.09.2011	667479 / 142824 / 3040	1070	-1170	
2	04.09.2010	19.04.2011	08.09.2011	667538 / 142662 / 3035	1070	-1242	
3	04.09.2010	19.04.2011	08.09.2011	667605 / 142554 / 3038	1070	-972	
4	04.09.2010	19.04.2011	08.09.2011	667907 / 143037 / 2998	960	-1287	
5	04.09.2010	19.04.2011	09.09.2011	668064 / 142909 / 3000	980	-1188	
6	04.09.2010	19.04.2011	09.09.2011	668347 / 143283 / 2945	860	-1980	
8	04.09.2010	19.04.2011	09.09.2011	668792 / 143398 / 2893	840	-2286	
9	04.09.2010	19.04.2011	09.09.2011	668956 / 143294 / 2882	1000	-1737	
10	04.09.2010	19.04.2011	09.09.2011	669377 / 143567 / 2777	920	-1755	
11	04.09.2010	19.04.2011	09.09.2011	669349 / 143893 / 2686	1030	-2691	
12	04.09.2010	19.04.2011	09.09.2011	669258 / 144204 / 2624	800	-4158	
13	04.09.2010	19.04.2011	09.09.2011	669370 / 144182 / 2619	840	-3159	
14	04.09.2010	19.04.2011	09.09.2011	669654 / 144510 / 2578	780	-3537	
15	04.09.2010	19.04.2011	09.09.2011	669670 / 144386 / 2574	680	-4077	
16	04.09.2010	19.04.2011	09.09.2011	670075 / 144849 / 2549	760	-3888	
18	04.09.2010	19.04.2011	09.09.2011	670349 / 145008 / 2513	900	-4806	
19	04.09.2010	19.04.2011	09.09.2011	670486 / 144828 / 2495	820	-4752	

Table 4.8: Griesgletscher - Individual stake measurements of winter and annual balance.

Figure 4.11: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

Figure 4.12: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.7 Pizolgletscher

Introduction

Pizolgletscher is a steep cirque glacier in the north-eastern Swiss Alps. With a surface area of about 0.07 km² Pizolgletscher is the dwarf in the Swiss glacier monitoring network and represents the size class of glacierets that include almost 80% of the total number of glaciers in Switzer-land. Pizolgletscher is north-exposed and located at relatively low elevation (2630-2780 m a.s.l.) which indicates that it depends on high quantities of winter accumulation. Seasonal mass balance measurements were started in 2006 (Huss, 2010). The observation network was extended from initially two to six stakes. Photogrammetrical surveys exist for 1968, 1973, 1979, 1985, 1990, 1997, 2006 providing area and ice volume changes over the last four decades (Huss, 2010).

Figure 4.13: Surface topography and observational network of the Pizolgletscher.

Investigations in 2009/10

Winter balance was determined on April 2nd, 2010. Snow probings at 106 locations were performed and snow density was measured in a snow pit. The glacier was covered by about four meters of

The Swiss Glaciers 2009/10 and 2010/11

snow on average. During the late summer field survey on 22nd September 2010 a negative mass balance for the measurement period since 13th September 2009 was observed at eight stakes. Although no winter snow remained on the glacier, ice ablation was below the long-term average, also due to several summer snow fall events.

Table 4.9: Pizolgletscher - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2009/1	0		2010/1	1	
	area	b _w	ba	area	b _w	ba
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2600 - 2650	0.020	1068	-1222	0.020	936	-2330
2650 - 2700	0.034	1110	-1020	0.034	1006	-2238
2700 - 2750	0.021	1351	-407	0.021	1224	-1565
2750 - 2800	0.005	1375	-254	0.005	1273	-1294
2600 - 2800	0.081	1180	-859	0.081	1063	-2023

Investigations in 2010/11

During a winter field survey on 26th March 2011, probings of the snow depth at 102 locations were realized and snow density was determined in a snow pit. Snow accumulation was found to be below average. Due to high air temperatures and little precipitation during spring and summer the melt-out started early and ablation was extreme. It is estimated that roughly 15% of the total remaining ice volume of Pizolgletscher was removed only in 2011. On 24th September 2011, the annual mass balance was measured at eight locations and all stakes were re-installed. The negative mass balances of the last years have contributed to an increasing quantity of supraglacial debris. The firn coverage originating from the beginning of the 2000s has almost completely disappeared. Several large crevasses were observed for the first time.

Table 4.10: Pizolgletscher - Individual stake measurements of winter and annual balance.

stake	period		coordinates	mass ba	mass balance		
	start	spring	end		b _w	ba	
				(m / m / m a.s.l.)	(mm v	w.e.)	
P1	13.09.2009	02.04.2010	22.09.2010	748531 / 202901 / 2632	890	-1490	
Ρ1	13.09.2009	02.04.2010	22.09.2010	748528 / 202908 / 2632	890	-1530	
P2	13.09.2009	02.04.2010	22.09.2010	748438 / 202778 / 2699	1440	-350	
P2	13.09.2009	02.04.2010	22.09.2010	748472 / 202755 / 2701	1120	-870	
P3	13.09.2009	02.04.2010	22.09.2010	748359 / 202656 / 2770	1130	-560	
P3	13.09.2009	02.04.2010	22.09.2010	748347 / 202645 / 2778	1130	-430	
P4	13.09.2009	02.04.2010	22.09.2010	748432 / 202904 / 2662	660	-2370	
P5	13.09.2009	02.04.2010	22.09.2010	748387 / 202892 / 2676	980	-1450	
P6	13.09.2009	02.04.2010	22.09.2010	748544 / 202682 / 2712	1540	-420	
P1	22.09.2010	26.03.2011	24.09.2011	748519 / 202909 / 2634	1030	-2480	
P2	22.09.2010	26.03.2011	24.09.2011	748438 / 202778 / 2699	1230	-1130	
P3	22.09.2010	26.03.2011	24.09.2011	748342 / 202650 / 2776	1470	-1420	
P4	22.09.2010	26.03.2011	24.09.2011	748436 / 202912 / 2657	1170	-3110	
P5	22.09.2010	26.03.2011	24.09.2011	748388 / 202886 / 2676	1190	-2170	
P6	22.09.2010	26.03.2011	24.09.2011	748549 / 202687 / 2710	1310	-1230	
P7	22.09.2010	26.03.2011	24.09.2011	748367 / 202681 / 2756	1170	-1890	
P8	22.09.2010	26.03.2011	24.09.2011	748535 / 202796 / 2673	970	-2030	

Figure 4.14: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

4.8 Glacier de la Plaine Morte

Introduction

Glacier de la Plaine Morte (7.88 km²) is the largest plateau glacier in the European Alps and thus represents a particularly interesting site for studying accelerating effects of climate change on Alpine glaciers. Glacier de la Plaine Morte is situated at the main Alpine divide between the cantons Berne and Valais. About 90% of the glacier surface lie in a narrow altitudinal band between 2650 and 2800 m a.s.l.. From the 5 km wide plateau with an average slope of less than four degrees, a small outlet glacier (Rezligletscher) flows northwards. There is no clear separation between the accumulation and the ablation area. In most years, the entire glacier is either snow-covered or completely snow-free at the end of summer, i.e. the equilibrium line either lies above or below the glacier. Ice flow speed is very limited and some crevasses are only observed on Retzligletscher. Large circular depressions of the glacier surface, probably related to cryo-karst, are common features and are stable over several decades. Three ice marginal lakes, notably Lac des Faverges with a water volume of more than 1 million m³, are subject to annual drainage events. The seasonal mass balance of Glacier de la Plaine Morte is determined since 2009 using the direct glaciological method (Huss et al., 2013). Due to the homogenous glacier surface characteristics the spatial variability in melt is mainly driven by differences in ice surface albedo.

Figure 4.15: Surface topography and observational network of the Glacier de la Plaine Morte.

Investigations in 2009/10

Measurements of the winter mass balance were conducted on April 6th, 2010. Snow probings at 66 locations distributed over the entire glacier surface were realized and snow density was determined in a snow pit. The average snow depth on the glacier was about three meters. In a mid-summer

field survey on July 31st, 2010, two stakes were re-drilled and stake readings on 12nd September 2010 indicated a negative mass balance for the measurement period since 15th September 2009 at four stakes. At the end of the hydrological year, the entire glacier surface was snow-free.

Altitude (m a.s.l.)	2009/1 area (km²)	0 b _w (mm w.e.)	b _a (mm w.e.)	2010/1 area (km²)	1 (mm w.e.)	b _a (mm w.e.)
2400 - 2500	0.009	1460	-862	0.009	1245	-2059
2500 - 2600	0.152	1329	-1278	0.152	1082	-2561
2600 - 2700	1.831	1343	-1028	1.831	1023	-2435
2700 - 2800	5.634	1345	-783	5.634	959	-2256
2800 - 2900	0.223	1467	63	0.223	933	-1314
2900 - 3000	0.029	1117	166	0.029	731	-639
2400 - 3000	7.878	1347	-822	7.878	975	-2271

Table 4.11: Glacier de la Plaine Morte - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Investigations in 2010/11

The winter 2010/11 was characterized by below average snow accumulation on Glacier de la Plaine Morte. A winter field survey on April 18th, 2011 provided probings of the snow depth at 193 locations and snow density was measured in two snow pits. The mean snow depth was only slightly above two meters. This contributed to an extraordinarily early melt-out of the glacier. During a survey on 5th July 2011 most of the glacier surface was already snow-free. Additional stake readings in connection with extensive dye tracer experiments (Finger et al., 2013) on September 22nd, 2011 indicated a major mass loss throughout the summer. Stakes were re-drilled on 1st September 2011, and annual mass balance was determined at three stakes for the measurement period 12th September 2010 to 2nd October 2011. In July 2011, the first subglacial drainage of Lac des Faverges was reported causing a significant short-term runoff increase in the Simme valley.

period coordinates mass balance stake start spring end bw ba (m / m / m a.s.l.)(mm w.e.) 1 15.10.2009 06.04.2010 12.09.2010 603822 / 136301 / 2709 1350 -10902 12.09.2010 603649 / 136687 / 2722 15.10.2009 -9703 605524 / 136548 / 2725 15.10.2009 06.04.2010 12.09.2010 1440 -9704 15.10.2009 -93012.09.2010 607023 / 137018 / 2763 12.09.2010 18.04.2011 02.10.2011 603822 / 136301 / 2709 400 -33801 2 12.09.2010 18.04.2011 02.10.2011 603649 / 136687 / 2722 1030 -23803 12.09.2010 18.04.2011 02.10.2011 605524 / 136548 / 2725 1030 -24904 12.09.2010 18.04.2011 02.10.2011 607023 / 137018 / 2763 960 -2330

Table 4.12: Glacier de la Plaine Morte - Individual stake measurements of winter and annual balance.

Figure 4.16: Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

4.9 Rhonegletscher

Introduction

The Rhonegletscher is a temperate valley glacier located in the central Swiss Alps, and is the primary source of water for the Rhone river. The glacier is easily accessible and therefore has been observed since the 19th century. The total surface area of the glacier is 15.93 km² flowing in a south direction from 3600 m a.s.l. down to 2200 m a.s.l. The first mass balance measurements were carried out in 1874 and are considered to be one of the first ever recorded worldwide. After two periods of measurements between 1884-1910, and 1980-'82, the measurement series was resumed in 2006. Determination of volumetric changes in decadal resolution reach further back

Figure 4.17: Surface topography and observational network of the Rhonegletscher.

to 1874 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1874, 1929, 1959, 1980, 1991, 2000, and 2007. Provided are stake measurements and the resulting mass balance data extrapolated to the entire glacier for the two periods of this report. However, there is no figure summarizing the entire data set because the collection processes only started in 2006.

Investigations in 2009/10

The measurement period extended from 10th September 2009 to 5th September 2010 with a field visit in spring on 21st to 23rd April 2010. There was a total of 433 individual snow depth soundings collected. The density was measured at Stake 13 using a firn drill. At the time of the field measurements in September, the glacier was covered with snow above the icefall and melt-out proceeded during summer up to about 2850 m asl with many of the exposed areas higher up completely melted out.

Rhonegletscher at the end of ablation season in 2010 (Photo: A. Bauder)

Investigations in 2010/11

The measurement period began on the 5th of September 2010 and ended on the 15th of September 2011 with a field visit in the spring on 4th and 5th of May 2011. During the spring field visit, snow samples from roughly 600 individual points were collected to measure the winter accumulation. No detailed measurements of a density profile were performed. In September, complete melt of winter accumulation extended to the highest regions.

Table 4.13: Rhonegletscher - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2009/10)		2010/11	1	
	area	b _w	b _a	area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2200 - 2300	0.268	507	-5449	0.268	-110	-7186
2300 - 2400	0.484	609	-4872	0.484	15	-6535
2400 - 2500	0.639	705	-4430	0.639	181	-5994
2500 - 2600	1.139	793	-3495	1.139	338	-5116
2600 - 2700	0.936	935	-2385	0.936	476	-4210
2700 - 2800	1.069	1134	-1380	1.069	914	-2725
2800 - 2900	2.154	1330	-414	2.154	1171	-1684
2900 - 3000	2.171	1467	289	2.171	1429	-742
3000 - 3100	1.877	1450	744	1.877	1434	-263
3100 - 3200	1.534	1487	1143	1.534	1475	129
3200 - 3300	1.456	1580	1395	1.456	1557	510
3300 - 3400	0.951	1615	1596	0.951	1585	820
3400 - 3500	0.795	1493	1614	0.795	1550	1066
3500 - 3600	0.334	1194	1277	0.334	1365	1019
2200 - 3600	15.808	1287	-391	15.808	1135	-1545

Proglacial lake reached a considerable size over summer 2011 and the snout lost contact to the rock barrier (Photo: A. Bauder)

stake		period		coordinates	mass ba	alance
	start	spring	end		bw	ba
				(m / m / m a.s.l.)	(mm v	v.e.)
01	10.09.2009	22.04.2010	05.09.2010	673815 / 166614 / 3236	1436	1513
02	10.09.2009		05.09.2010	673551 / 165949 / 3128		1238
03	10.09.2009	22.04.2010	05.09.2010	673095 / 164926 / 2937	1235	738
04	10.09.2009		03.09.2010	673350 / 162759 / 2754		-1332
05	10.09.2009	22.04.2010	02.09.2010	672521 / 161915 / 2615	447	-3114
06	10.09.2009	22.04.2010	02.09.2010	672420 / 160844 / 2482	-540	-4689
07	10.09.2009	22.04.2010	02.09.2010	672657 / 160172 / 2379	-330	-5067
08	09.09.2009	22.04.2010	02.09.2010	672688 / 159722 / 2322	-420	-5265
09	09.09.2009	22.04.2010	02.09.2010	672597 / 159478 / 2276	-500	-5481
10	09.09.2009	22.04.2010	02.09.2010	672512 / 159375 / 2259	-640	-5283
11	09.09.2009	23.04.2010	02.09.2010	672450 / 159247 / 2238	-470	-6678
12	09.09.2009	22.04.2010	02.09.2010	672814 / 159949 / 2342	-440	-4878
13	09.09.2009	21.04.2010	02.09.2010	672711 / 159905 / 2340	-460	-4986
14	09.09.2009	21.04.2010	02.09.2010	672573 / 159901 / 2339	-850	-5301
01	05.09.2010	04.05.2011	15.09.2011	673815 / 166615 / 3236	1412	556
02	05.09.2010	04.05.2011	15.09.2011	673552 / 165950 / 3128	1224	99
03	05.09.2010	04.05.2011	15.09.2011	673099 / 164930 / 2936	1392	162
04	03.09.2010	04.05.2011	13.09.2011	673356 / 162754 / 2754	540	-2592
05	03.09.2010	04.05.2011	13.09.2011	672520 / 161919 / 2614	-60	-4725
06	03.09.2010	04.05.2011	13.09.2011	672420 / 160844 / 2480	-660	-6237
07	03.09.2010	04.05.2011	12.09.2011	672660 / 160164 / 2375	-810	-6984
08	03.09.2010	04.05.2011	12.09.2011	672686 / 159725 / 2319	-1020	-7047
09	03.09.2010	05.05.2011	13.09.2011	672586 / 159460 / 2269	-720	-7092
10	03.09.2010	04.05.2011	12.09.2011	672511 / 159379 / 2255	-960	-7056
11	03.09.2010	04.05.2011	12.09.2011	672438 / 159265 / 2232	-1422	-8334
12	03.09.2010	04.05.2011	12.09.2011	672832 / 159940 / 2337	-910	-6228
13	03.09.2010	04.05.2011	13.09.2011	672738 / 159880 / 2335	-730	-6066
14	03.09.2010	04.05.2011	12.09.2011	672590 / 159897 / 2336	-1080	-6525

Table 4.14: Rhonegletscher - Individual stake measurements of winter and annual balance.

Figure 4.18: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

4.10 Silvrettagletscher

Introduction

Silvrettagletscher is a small temperate mountain glacier located in the north-eastern part of Switzerland in the Silvretta massif at the border to Austria. The present surface area is 2.8 km^2 , stretching from 3079 m a.s.l. down to 2467 m a.s.l.

First mass balance measurements date back to 1910s (Firnberichte, 1978). Seasonal observations of 2 stakes were conducted until 1959, when the stake network was extended to about 40 stakes. Huss and Bauder (2009) compiled and homogenized all existing measurements of stake 5 to a continuous time series 1914-2007 of seasonal resolution (see Section 4.10 in volume 127/128). Determination of volumetric changes in decadal resolution reach further back to 1892 (Bauder et al., 2007). Topographic maps and photogrammetrical surveys exist for 1892, 1938, 1959, 1973, 1986, 1994, 2003 and 2007. Huss et al. (2009) reanalyzed and homogenized the seasonal stake data and ice volume changes for the period 1959-2007. Results of the mean specific winter and annual balance with associated area, ELA and AAR values for comparable fixed time periods have been reported in Section 4.9 of volume 125/126.

Figure 4.19: Surface topography and observational network of the Silvrettagletscher.

Investigations in 2009/10

The measurement period extended from 26th September 2009 to 11th September 2010. The winter mass balance was determined during a field visit in spring on 22nd May 2010. Snow depth samples

The Swiss Glaciers 2009/10 and 2010/11

were collected at 343 locations and supplemented by two density profiles from snow pits. At the time of the measurements in autumn 2010, large sections of the glacier were covered with fresh snow. The snowline at the end of summer reached an elevation of 2850 m asl. Measurements from 15 stakes and a density profile were available for determining the annual mass balance.

Silvrettagletscher covered with fresh snow at the time of the field survey in September 2010 (Photo: A. Bauder)

Investigations in 2010/11

The measuring period was from 11th September 2010 to 11th September 2011. During a spring field visit on 22nd April 2011, snow samples from about 170 individual points were collected. Density profiles were acquired at two locations in snow pits. In September the glacier was almost completely free of snow accumulated during winter. Only a few patches in hollows and on steep shaded slopes survived the summer and no density measurements were possible. Measurements were available from 16 stakes for determining the annual mass balance.

Figure 4.20: Silvrettagletscher - Mean specific annual balance (bars) and cumulative annual balance (line) for the period 1959-2011.

Table 4.15: Silvrettagletscher - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2009/1 area	0 b _w	b _a	2010/1 area	l1 b _w	b _a
(m a.s.l.)	(km²)	(mm w.e.)	(mm w.e.)	(km²)	(mm w.e.)	(mm w.e.)
2400 - 2500	0.023	1417	-2027	0.023	967	-2854
2500 - 2600	0.362	1366	-1512	0.362	949	-2754
2600 - 2700	0.407	1443	-900	0.404	1001	-1740
2700 - 2800	0.698	1372	-527	0.676	1053	-1397
2800 - 2900	0.583	1382	-46	0.576	1063	-1065
2900 - 3000	0.580	1310	245	0.583	1067	-722
3000 - 3100	0.136	1205	355	0.117	923	-609
2400 - 3100	2.789	1363	-417	2.741	1030	-1392

Table 4.16:	Silvrettagletscher -	Individual	stake	measuren	nents	of	winter	and	annual	bal-
	ance.									

stake		period		coordinates	mass ba	mass balance	
	start	spring	end		bw	ba	
		1 5		(m / m / m a.s.l.)	(mm v	w.e.)	
01	27.09.2009	22.05.2010	11.09.2010	801851 / 191728 / 2983	1282	865	
02	26.09.2009	22.05.2010	11.09.2010	801916 / 192030 / 2954	1348	397	
03	26.09.2009	22.05.2010	11.09.2010	801787 / 192297 / 2891	1383	1272	
04	26.09.2009	23.05.2010	11.09.2010	801745 / 192633 / 2821	1273	366	
05	27.09.2009	23.05.2010	12.09.2010	801069 / 192691 / 2718	1417	-558	
06	25.09.2009	23.05.2010	12.09.2010	800524 / 192887 / 2622	1225	-1440	
07	25.09.2009	23.05.2010	12.09.2010	800171 / 192871 / 2573	1469	-1557	
08	25.09.2009	23.05.2010	12.09.2010	799823 / 192733 / 2529	1510	-1458	
09	25.09.2009	23.05.2010	12.09.2010	799666 / 192731 / 2497	1387	-2115	
10	27.09.2009	22.05.2010	11.09.2010	801526 / 191808 / 2937	1197	10	
11	25.09.2009	23.05.2010	11.09.2010	800727 / 192201 / 2724	1360	-675	
12	27.09.2009	23.05.2010	12.09.2010	800405 / 192582 / 2597	1357	-1386	
13	25.09.2009	23.05.2010	12.09.2010	799947 / 192611 / 2543	1220	-2151	
15	26.09.2009	22.05.2010	11.09.2010	801164 / 191987 / 2856	1115	-711	
16	25.09.2009	23.05.2010	11.09.2010	801333 / 192373 / 2767	1153	-927	
17	26.09.2009	23.05.2010	12.09.2010	801454 / 192817 / 2776	1113	-621	
18	25.09.2009	23.05.2010	11.09.2010	800760 / 192544 / 2690	1508	-639	
01	11.09.2010	21.04.2011	11.09.2011	801840 / 191729 / 2981	1159	-414	
02	11.09.2010	22.04.2011	11.09.2011	801927 / 192023 / 2956	1176	-318	
03	11.09.2010	22.04.2011	11.09.2011	801786 / 192292 / 2893	1242	-276	
04	11.09.2010	22.04.2011	11.09.2011	801743 / 192633 / 2820	900	-1314	
05	12.09.2010	22.04.2011	11.09.2011	801076 / 192689 / 2719	1006	-1458	
06	12.09.2010	22.04.2011	11.09.2011	800515 / 192890 / 2620	905	-2232	
07	12.09.2010	22.04.2011	11.09.2011	800169 / 192871 / 2571	1037	-2511	
08	12.09.2010	21.04.2011	11.09.2011	799821 / 192733 / 2527	914	-2268	
09	12.09.2010		11.09.2011	799665 / 192731 / 2494		-3060	
10	11.09.2010	21.04.2011	11.09.2011	801513 / 191815 / 2935	1086	-1362	
11	11.09.2010	21.04.2011	11.09.2011	800726 / 192202 / 2723	926	-1620	
12	12.09.2010	21.04.2011	11.09.2011	800406 / 192587 / 2596	934	-2448	
13	12.09.2010	21.04.2011	11.09.2011	799949 / 192612 / 2541	754	-3492	
15	11.09.2010	21.04.2011	11.09.2011	801160 / 191989 / 2854	905	-1638	
17	12.09.2010	22.04.2011	11.09.2011	801451 / 192818 / 2775	947	-1665	
18	11.09.2010	21.04.2011	11.09.2011	800754 / 192546 / 2688	894	-1620	

Figure 4.21: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

Figure 4.22: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.11 Glacier de Tsanfleuron

Introduction

Glacier de Tsanfleuron is a well-accessible medium-sized glacier at the border between the cantons of Valais and Vaud. The glacier currently has an area of $3.28 \ km^2$ and exhibits relatively small surface slopes. Glaciological investigations were started in 2009 with the aim of establishing a mass balance monitoring program in the Western Swiss Alps. In addition, measurements are also performed on the very small Glacier du Sex Rouge connected to Tsanfleuron in the accumulation area. This permits comparing the mass balance response of neighbouring glaciers of different size and characteristics.

Figure 4.23: Surface topography and observational network of the Glacier de Tsanfleuron.

Investigations in 2009/10

The winter mass balance observations on Glacier de Tsanfleuron were conducted on April 7th, 2010. Snow probings at 34 locations were performed and snow density was determined in a snow pit. On average, roughly 3 meters of snow were recorded. Simultaneously, the ice thickness was measured using a ground penetrating radar system. In a mid-summer field survey on 28th July 2010 two stakes were re-drilled. On September 21st, 2010 a negative mass balance for the measurement period since October 31st, 2009 was found at all four measurement sites. All stakes were re-installed. At the end of the ablation season the glacier was completely snow-free and mass loss was considerable.

Altitude (m a.s.l.)	2009/1 area (km²)	0 <u> </u>	b _a (mm w.e.)	2010/1 area (km²)	.1 (mm w.e.)	b _a (mm w.e.)
2500 - 2600	0.098	1090	-1753	0.098	975	-4356
2600 - 2700	0.497	1062	-1435	0.497	1106	-3357
2700 - 2800	1.143	1084	-955	1.143	1219	-2323
2800 - 2900	0.964	1075	-546	0.964	1183	-1674
2900 - 3000	0.050	954	-380	0.050	1068	-1228
2500 - 3000	2.752	1075	-917	2.752	1175	-2336

Table 4.17: Glacier de Tsanfleuron - Specific winter and annual balance versus altitude in the two periods 2009/10 and 2010/11 evaluated for the exact measurement period defined by the dates of field survey.

Investigations in 2010/11

During the winter field survey on April 10th, 2011 probings of the snow depth at 154 locations distributed over the entire glacier were realized and snow density was determined in a snow pit. The below average winter snow cover and the warm and dry weather conditions contributed to an early depletion of the winter snow cover and resulted in extreme ice ablation. On 26th September 2011 ablation readings were obtained for three stakes. Unfortunately, two stakes were lost due to the unexpectedly high melt. Even for the highest regions of Glacier du Tsanfleuron, a mass loss of more than 1 m water equivalent was found.

 Table 4.18: Glacier de Tsanfleuron - Individual stake measurements of winter and annual balance.

stake	start	period spring	end	coordinates (m / m / m a.s.l.)	mass b b _w (mm y	alance b _a w.e.)
1 2 4 5	31.10.2009 31.10.2009 31.10.2009 31.10.2009	07.04.2010 07.04.2010	21.09.2010 21.09.2010 21.09.2010 21.09.2010	582846 / 130336 / 2818 582917 / 129534 / 2857 583979 / 130332 / 2727 584276 / 130051 / 2685	1190 1070	-350 -420 -960 -1500
4 5 6	21.09.2010 21.09.2010 21.09.2010	10.04.2011 10.04.2011 10.04.2011	26.09.2011 26.09.2011 26.09.2011	583979 / 130332 / 2727 584276 / 130051 / 2685 584741 / 130343 / 2603	1200 1200 1120	-2590 -3040 -3720

Figure 4.24: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2009/10 (top) and 2010/11 (bottom). Small symbols mark the individual measurements.

4.12 Claridenfirn

Introduction

Measurements of the snow and firn accumulation and melt, as well as of precipitation values in the accumulation area of the Claridenfirn, have been undertaken by various researchers since 1914. The traditional glaciological method was applied by digging a snowpit down to the layer of ochre applied the previous autumn and measuring the water equivalents. Specific annual balances were determined every autumn since 1957 and also regularly in spring at two plateau locations at altitudes of 2700 and 2900 m a.s.l. The reports dealing with the years 1914 to 1978 are published in Kasser et al. (1986). The method of measurement and the results from the period 1914-1984 are published in Müller and Kappenberger (1991). A further update of the measurements until 2007 allowed Huss and Bauder (2009) to separate accumulation and melt and to interpret the entire time series in terms of climatic influences (see Section 4.10 in volume 127/128).

Figure 4.25: Surface topography and observational network of the Claridenfirn.

Investigations in 2009/10

The spring measurements were taken on 23rd May. Detailed observations in a snow pit at the upper stake were supplemented by 10-20 snow depth samples in the vicinity of the stake. During the warm month of April considerable melt occurred at the surface and several ice lenses provided evidence of percolation into the accumulated layer. Temperatures were still slightly below freezing only at the greatest depths and indicated that mass losses had not yet occurred. Autumn measurements were carried out on 6th September. At the lower site, snow accumulation during winter had melted completely, while at the upper site, approx. 35 cm of snow had accumulated since maximum meltout in August. In addition to the snow pits and depth probing, two precipitation storage gauges were monitered and readings taken during spring and fall visits at Claridenhütte and Geissbützistock.

Investigations in 2010/11

The investigations included snow depth measurements at both stakes, snow pit measurements in spring and fall at the upper site, stake readings, and determination of the position using a small theodolite in fall. The spring field survey was carried out on 1st May, and the late summer survey on 3rd September. In May, percolation of meltwater extended only as far as the upper third, while ice lenses were less clearly visible than in the previous year. The accumulated snow from the winter season was completely melted at both sites by early September. This has very rarely been observed at the upper site since observations began nearly 100 years ago.

stake		period		coordinates	mass ba	alance
	start	spring	end		b _w	b _a
				(m / m / m a.s.l.)	(mm \	w.e.)
lower	13.09.2009	23.05.2010	06.09.2010	712245 / 190388 / 2700	1135	-338
upper	13.09.2009	23.05.2010	06.09.2010	710598 / 189141 / 2900	1648	886
lower upper	06.09.2010 06.09.2010	01.05.2011 01.05.2011	03.09.2011 03.09.2011	712245 / 190388 / 2700 710598 / 189141 / 2900	939 1307	-1498 -189

Table 4.19: Claridenfirn - Individual stake measurements of winter and annual balance.

Figure 4.26: Mass balance (top) and cumulated deviation changes (bottom) of the lower stake on Claridenfirn over the whole observation period. The gray shaded area highlights the years of the current report.

Figure 4.27: Mass balance (top) and cumulated deviation changes (bottom) of the upper stake on Claridenfirn over the whole observation period. The gray shaded area highlights the years of the current report.

4.13 Grosser Aletsch (Jungfraufirn)

Introduction

Grosser Aletschgletscher is the largest ice mass in the Alps and borders to the main northern Alpine crest. The three main tributaries merge at the Konkordiaplatz and form the common tongue which extends southwards for about 15 km. Starting in 1918, the first stake was installed at 3350 m a.s.l. on Jungfraufirn and snow accumulation and annual mass balance was measured almost continuously at P3 (Figure 4.28). Huss and Bauder (2009) compiled and homogenized all existing measurements to a continuous time series of seasonal resolution (see Section 4.10 in volume 127/128).

Figure 4.28: Surface topography and observational network of the Grosser Aletschgletscher.

Investigations in 2009/10

The investigations consisted of snow depth measurements and density profiling using a firn drill in spring and fall. This program was supplemented by stake readings approx. twice a month. The measurements were taken in spring on 29th May and in fall on 10th September. The layer of winter accumulation included 1-2 not very distinct ice lenses detectable by snow depth probing. The distinct surface crust present during the previous fall could be identified clearly at both measurement events in May and October. In addition, the position of the stake was surveyed using a high-precision differential GPS.

Investigations in 2010/11

The same set of measurements was conducted as in the previous period. The spring field survey was carried out on 18th May and the fall survey on 17th October. Snow depth measurement and firn coring in May showed a homogeneous layer of winter accumulation with no distinct ice lenses. Corresponding measurements from stake readings, firn drilling, and snow depth measurements all delivered similar results. A surface crust and a distinct horizon at 1 m depth representing the summer melt surface were present in October.

stake	period		coordinates	mass balance		
	start	spring	end		b _w	ba
				(m / m / m a.s.l.)	(mm w	.e.)
P3	06.10.2009	29.05.2010	21.09.2010	641821 / 154818 / 3342	2054	2029
P3	21.09.2010	18.05.2011	17.10.2011	641821 / 154818 / 3343	1846	1624

Table 4.20: Aletsch - Individual stake measurements of winter and annual balance.

5 Velocity

5.1 Introduction

On some specific glaciers (Figure 5.1) long-term investigations are carried out with measurements of the ice flow velocity. The VAW/ETHZ has been contracted by two hydro-electric power companies Kraftwerke Mattmark, and Force Motrice de Mauvoisin SA to survey the glaciers in the operated catchments. The main objective of this research assignment is to observe the flow conditions of the glaciers, particularly with regard to their potential threat to the buildings and operation of the power station in the valley. The observations are mainly focused on the two glaciers Giétro and Corbassière in the Mauvoisin area (Val de Bagnes) and the two glaciers Allalin and Schwarzberg in the Mattmark area (Saastal).

Figure 5.1: Investigated glaciers for velocity measurements.

5.2 Glacier du Giétro

Introduction

One of the longest measurement series in existence, for Glacier du Giétro (Figure 5.2) in Val de Bagnes (Valais), is being continued by VAW/ETHZ under contract of the Force Motrice de Mauvoisin SA. The aim of these annual observations is the early recognition of glacier break-off, which can endanger the dammed lake located below it. The measurements, which have been carried out for more than 40 years, include periods of glacier growth and recession (VAW, 1997, 1998; Bauder et al., 2002; Raymond et al., 2003).

Figure 5.2: Surface topography and observational network of the Glacier du Giétro.

Figure 5.3 shows the velocity mesurements at 7 stakes along the central flow line of the glacier, taken since 1966. There are 3 distinct periods: in the first (1966-1976), the velocities in the accumulation area (stakes 1, 2 and 4) are approximately 5-20 m per year, in the central region of the glacier (stake 5) about 35 m per year and in the steep tongue area (stakes 6, 8 and 10) they are in the range of 50-90 m annually. The second period (1977 to 1982) is marked by a distinct acceleration phase, in which the speeds (for example at stake 6) increase from 90-120 m per year.

From the middle of the 1980s onward, the velocities decrease sharply again and in the last years have reached the lowest values measured since 1966.

Investigations in 2009/10 and in 2010/11

Seven stakes provided measurements of velocity and local mass balance. The field survey in late summer 2010 was carried out on 1st September. At the end of August melt had occurred over almost the entire extent of the firn plateau, and of the snow accumulated during winter only a few thin patches were left. On 30th August 2011, the field measurements were taken for the second period. Again the melt extent reached the entire firn plateau and at all stakes mass losses were recorded.

stake	period		coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
Ρ1	07.09.2009	01.09.2010	596143 / 92346 / 3310	-0.76	3.32
Ρ1	01.09.2010	30.08.2011	596143 / 92346 / 3310		3.37
P2	07.09.2009	01.09.2010	596605 / 92835 / 3255	-0.70	9.40
P2	01.09.2010	30.08.2011	596605 / 92835 / 3255		9.29
P4	07.09.2009	01.09.2010	596211 / 93400 / 3195	-0.54	13.77
P4	01.09.2010	30.08.2011	596211 / 93400 / 3195		13.25
P5	07.09.2009	01.09.2010	595615 / 94303 / 3060	-0.97	20.86
P5	01.09.2010	30.08.2011	595615 / 94303 / 3060	-2.05	17.45
P6	07.09.2009	01.09.2010	594568 / 94497 / 2830		30.45
P6	01.09.2010	30.08.2011	594568 / 94497 / 2830		27.31
P8	07.09.2009	01.09.2010	594327 / 94268 / 2670	-7.99	4.92
P8	01.09.2010	30.08.2011	594327 / 94268 / 2670		
P10	07.09.2009	01.09.2010	594270 / 94250 / 2660		0.85
P10	01.09.2010	30.08.2011	594270 / 94250 / 2660		

Table 5.1: Glacier du Giétro - Individual measurements of annual flow velocity and thickness change

Velocity in 2009/10 and in 2010/11

Due to the glacier retreat with complete icemelt at the glacier snout, the two lowest sites had to be abandoned. The ongoing decrease in speed was more pronounced at the lower sites (P4 - P6) with higher values than on the flat area of the firn plateau (P1 - P2). This stems from the significant reduction in the ice thickness over the past several years.

Figure 5.3: Annual flow velocities (top) and thickness change (bottom) of the Glacier du Giétro at all 7 stakes. Note the gaps that hamper the interpretation of the total thickness change. The gray shaded area highlights the years of the current report.

5.3 Glacier de Corbassière

Introduction

Glacier de Corbassière (Figure 5.4) has been under observation since 1955 by taking length change measurements. This glacier was threatening the water intake of the Mauvoisin power company at the front of the tongue. In the ablation area of the glacier, two profiles made by stakes are observed annually to determine the velocities (Table 5.2). Figure 5.5 shows the annual velocities for the two profiles since 1967.

Figure 5.4: Surface topography and observational network of the Glacier du Corbassière.

Investigations in 2009/10 and in 2010/11

The field surveys were carried out on 1st September 2010 and 30th on August 2011. As in previous years seven stakes were maintained on the glacier tongue. The continuous reduction in ice thickness and glacier width in the lower profile increasingly impeded surveying activities and efforts to restore the stakes to their initial position.

Velocity in 2009/10 and in 2010/11

Ice velocity decreased at all stakes during these two periods. Stagnation was measured only at stake B6. This may stem from greater meltwater input during the warmer second period. The general trend toward steadily decreasing iceflow velocity accompanied by a lowering of the surface height was maintained.

Figure 5.5: Annual flow velocities (top) and thickness change (bottom) of the Glacier de Corbassière at two profiles with 3 stakes each and the additional stake in between. The gray shaded area highlights the years of the current report.

stake	per	iod	coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
B2	07.09.2009	01.09.2010	589577 / 93202 / 2650	-2.07	11.23
B2	01.09.2010	30.08.2011	589577 / 93202 / 2650	-3.26	10.78
B4	07.09.2009	01.09.2010	589392 / 93101 / 2650	-0.10	18.70
B4	01.09.2010	30.08.2011	589392 / 93101 / 2650	-4.35	18.17
B6	07.09.2009	01.09.2010	589230 / 93012 / 2655	-1.62	18.83
B6	01.09.2010	30.08.2011	589230 / 93012 / 2655	-3.34	18.98
R	07.09.2009	01.09.2010	589150 / 93650 / 2620		14.01
R	01.09.2010	30.08.2011	589150 / 93650 / 2620	-3.95	13.41
A2	07.09.2009	01.09.2010	588650 / 94315 / 2475	-4.06	9.52
A2	01.09.2010	30.08.2011	588650 / 94315 / 2475		8.48
A4	07.09.2009	01.09.2010	588450 / 94257 / 2460		7.56
A4	01.09.2010	30.08.2011	588450 / 94257 / 2460	-5.42	6.64
A6	07.09.2009	01.09.2010	588273 / 94207 / 2470	-4.10	2.02
A6	01.09.2010	30.08.2011	588273 / 94207 / 2470	-5.14	1.64

Table 5.2: Glacier de Corbassière - Individual measurements of annual flow velocity and thickness change

Glacier de Corbassière in September 2010 (Photo: A. Bauder)

5.4 Mattmark

Introduction

The first ice flow velocity and mass balance measurements in the Mattmark area date back to 1955 (VAW, 1999; Antoni, 2005). Investigations were carried out with a network of up to 22 stakes on the glaciers Allalin, Hohlaub, Kessjen, Schwarzberg and Tälliboden. Currently, measurements are continued on 10 selected stakes as part of the investigations by VAW/ETHZ for the Mattmark hydro-power company (Figure 5.6).

Figure 5.6: Surface topography and observational network of the Mattmark glaciers.

Investigations in 2009/10

The measurement period at the stakes on Schwarzberggletscher, Hohlaub as well as those on Allalingletscher began on 22^{nd} September 2009 and ended on 13^{th} September 2010. Results for

horizontal flow velocity and thickness change for each glacier are given in Tables 5.3, 5.4 and 5.5.

The measurement period at the stakes on Schwarzberggletscher, Hohlaub as well as the on Allalingletscher began on September 22^{nd} , 2009 and ended on September 13^{th} , 2010. The individual results of the horizontal flow velocity and thickness change for each glacier are given in the Tables 5.3, 5.4 and 5.5.

Figure 5.7: Annual flow velocities (top) and thickness change (below) of the Allalingletscher at 5 stakes. The gray shaded area highlights the years of the current report.

Investigations in 2010/11

The field survey was carried out on September 6^{th} , 2011. The results of the horizontal flow velocity and thickness change for each individual glacier are presented in the following Tables 5.3, 5.4 and 5.5.

-					
stake	per	riod	coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
100	22.09.2009	13.09.2010	636360 / 98710 / 3230	-1.27	38.22
100	13.09.2010	06.09.2011	636360 / 98710 / 3230	1.72	36.92
101	22.09.2009	13.09.2010	638400 / 99360 / 2850	-1.96	15.72
101	13.09.2010	06.09.2011	638400 / 99360 / 2850	0.47	14.85
102	22.09.2009	13.09.2010	638350 / 99480 / 2850	-1.83	18.30
102	13.09.2010	06.09.2011	638350 / 99480 / 2850	-1.23	17.17
103	22.09.2009	13.09.2010	638325 / 99575 / 2855	-1.82	19.59
103	13.09.2010	06.09.2011	638325 / 99575 / 2855		18.45
104	22.09.2009	13.09.2010	638290 / 99665 / 2865	-1.00	19.59
104	13.09.2010	06.09.2011	638290 / 99665 / 2865	-1.50	18.96
105	22.09.2009	13.09.2010	638260 / 99755 / 2885	-1.53	20.31
105	13.09.2010	06.09.2011	638260 / 99755 / 2885	-1.69	19.41
106	22.09.2009	13.09.2010	637095 / 97810 / 3375	-0.41	3.53
106	13.09.2010	06.09.2011	637095 / 97810 / 3375	0.93	3.46

Table 5.3: Allalin - Individual measurements of annual flow velocity and thickness change

Table 5.4: Hohlaub - Individual measurements of annual flow velocity and thickness change

stake	period		coordinates	thickness change	velocity	
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$	
110	22.09.2009	13.09.2010	637405 / 100710 / 3050	-1.34	11.34	
110	13.09.2010	06.09.2011	637405 / 100710 / 3050	-1.35	11.29	

Table 5.5:	Schwarzberg -	Individual	measurements	of	annual	flow	velocity	and	thickness
	change								

stake	period		coordinates	thickness change	velocity
	start end		(m / m / m a.s.l.)	(m)	(m a ⁻¹)
120	22.09.2009	13.09.2010	638320 / 96220 / 2880	-1.86	8.35
120	13.09.2010	06.09.2011	638320 / 96220 / 2880	-1.64	8.16
123	22.09.2009	13.09.2010	638525 / 96730 / 2805	-2.38	7.04
123	13.09.2010	06.09.2011	638525 / 96730 / 2805	-3.30	6.73

6 The Swiss Glacier Inventory SGI2010

6.1 Background

The rapid mass loss and shrinkage of Swiss glaciers observed since the mid-1980s requires more frequent updates of glacier inventories (every 5-10 years; Paul et al., 2007). The so far latest glacier outlines for the Swiss Alps derived by Paul et al. (2011) based on 30 m Landsat imagery from 2003 and a semi-automatic mapping approach are thus already outdated. Moreover, use of medium-resolution source data for glacier mapping yields qualitatively too poor results for change assessments of small ($<1.0 \text{ km}^2$) glaciers. This is problematic for the Swiss Alps, where almost 90% of the individual glaciers belong to these size classes (Fischer et al., 2014). Therefore, the fifth Swiss Glacier Inventory was recently compiled by manual digitization from high-resolution (25 cm) aerial orthophotographs acquired between 2008 and 2011. A more detailed description of the source data used and the methodologies applied for compilation of the new inventory, selected aspects of glacier change assessment from 1973 to 2010, as well as an accuracy assessment is given in Fischer et al. (2014). In the following, only some key aspects of the new inventory are presented.

6.2 Previous glacier inventories

Digital glacier outlines for the first inventory of the entire Swiss Alps for the Little Ice Age (LIA) maximum extent around 1850 were reconstructed from geomorphological or glacial historical evidence and topographic maps of the 'Dufour' and 'Siegfried' atlas (Maisch et al., 2000). The second Swiss Glacier Inventory 1973 (Müller et al., 1976) was derived from stereo-photogrammetric interpretation of aerial imagery collected in September 1973, completed by Maisch et al. (2000) and provided in finalized digital format by Paul (2003). A third inventory was created by applying a threshold to a ratio of spectral bands (TM 4/TM 5) to extract glacier outlines from 30 m Landsat TM scenes acquired on 31 August 1998 and 13 September 1999 (Paul et al., 2007), and a forth inventory applying a threshold to a ratio of bands TM 3/TM 5 of Landsat TM scenes acquired on the 6 and 13 August 2003 (Paul et al., 2011).

6.3 Mapping glacier outlines for the SGI2010

Based on the SWISSIMAGE Level 2 mosaic composed of high-resolution (25 cm) digital aerial orthophotographs covering entire Switzerland (swisstopo, 2010), outlines of all Swiss glaciers were manually digitized using a commercial Geographic Information System (GIS) software tool. For the individual SWISSIMAGE tiles used, aerial photographs were taken on cloudless days and at the end of the ablation season (September/October) between 2008 and 2011. Because 98% of the imagery was acquired over only two hydrological years (autumn 2009 to autumn 2011) and most glacier entities were mapped from source data of 2010, the inventory was not temporally homogenized and named the Swiss Glacier Inventory 2010 (SGI2010). To avoid missing any glacierized surfaces or erroneously mapping seasonal and/or perennial snow as glaciers, digital extents of the 1973 inventory were used as a reference or starting point. The hydrologically-based coding scheme of the 1973 inventory (Müller et al., 1976; Maisch et al., 2000) was adopted for the SGI2010. This allowed glacier-individual change assessments over the 37-year period of 1973-2010 (Figure 6.1). Mapping by only one single expert ensured data consistency. The high level of visible detail and structure, good contrast, the absence of clouds and particularly favorable snow conditions on the 25 cm orthoimagery used were in advantage of accurate glacier mapping even for the smallest glacier size classes. However, mapping of highly debris-covered glacier ice was shown to remain challenging even if based on high-resolution source data.

6.4 The new SGI2010 data set

According to the *guidelines for the compilation of glacier inventory data from digital sources version* 1.0 (Paul et al., 2010), the following parameters were derived for every glacier entity inventoried in the new SGI2010 database: (1) identification (ID); (2) x- and y-point coordinates; (3) acquisition date of the SWISSIMAGE tiles used; (4) surface area (km²); (5) length (km); (6) minimum, (7) maximum, (8) mean, and (9) median elevation (m a.s.l.); (10) mean slope (degree); and (11) mean aspect. Parameters (6) – (10) were calculated with the new 2 m swissALTI3D digital elevation model (swisstopo, 2013) of the same acquisition dates as for the source data of the SGI2010 glacier outlines. Glacier length was measured along an automatically derived center line following Machguth and Huss (2014). The entire data set is available from the University of Fribourg, or over the Global Land Ice Measurements from Space (GLIMS) database.

6.5 Observed changes in area and number 1973-2010

For the entire Swiss Alps, the total glacierized area mapped for 2010 is 944.3 ± 24.1 km², which corresponds to a total area loss of 27.7% since 1973, when 1306.9 km² were covered by glaciers. In number, 733 glaciers (34%) have completely vanished since 1973, and 1420 glacier entities remain by 2010 (Table 6.1, Figure 6.2a,b). Relative area changes between 1973 and 2010 vary significantly for individual glaciers, but were generally highest for smallest glaciers and decreased

Figure 6.1: Glacier changes in the Clariden / Tödi area from 1973 to 2010. Underlain are the 2010 SWISSIMAGE Level 2 tiles used for creation of 2010 glacier outlines. Br is Brunni-, H Hüfi-, C Clariden-, Bi Biferten- and L Limmernfirn.

towards largest glacier size classes (Figure 6.2c). The percentaged size-class distribution has hardly changed since 1973 (Table 6.1). As in 1973, most of the glacierized area in the Swiss Alps belongs to north-facing glaciers in 2010 (mean aspects NW-N-NE) (Figure 6.2d). The mean aspect class SE has to be considered with care because it is strongly influenced by Grosser Aletschgletscher (78.4 km² in 2010). Relative changes in area and number are smallest for SE-exposed and highest for W-exposed glaciers.

Area values for 1973 and 2010, relative area changes between 1973 and 2010, and 2010 length of the 100 largest glaciers according to the SGI2010 and of all glaciers of the Swiss glacier monitoring network are listed in Table 6.2. Three glaciers of the latter (Lischana, Tälliboden and Val Torta) are omitted as they were not inventoried in the SGI2010 anymore. All glaciers except for Hintersulzfirn, a highly debris-covered small glacier situated in a very shadowy cirque, show negative area changes.

Size class (km ²)	1973 count	1973 area (km²)	2010 count	2010 area (km²)	area change
< 0.1	1058	42.3	770	25.3	-17.0
0.1 - 0.5	715	162.1	396	93.0	-69.1
0.5 - 1.0	162	110.3	91	65.4	-44.9
1.0 - 5.0	167	321.6	118	225.3	-96.3
5.0 - 10.0	33	233.5	29	196.7	-36.8
> 10.0	20	437.1	16	338.6	-98.5
Total	2155	1306.9	1420	944.3	-362.6

Table 6.1: Changes in area and number of glaciers between 1973 and 2010 evaluated for different size classes. Taken from Fischer et al. (2014).

Figure 6.2: Percentages of (a) area and (b) number of glaciers for the entire Swiss Alps in 1973 and 2010 relative to the total. (c) Observed relative changes in area 1973-2010 versus initial area. Horizontal lines show average values for individual size classes. (d) Area distribution of glaciers in the entire Swiss Alps in 1973 and 2010 for classes of mean aspect and relative changes (%) in area and number (Fischer et al., 2014).

Table 6.2: Compilation of the 1973 and 2010 areas (A1973, A2010), relative area changes (dA), current length (L2010) and year of image acquisition (Year) of the 100 largest glaciers of the SGI2010 and of all glaciers included in the Swiss glacier monitoring network.

Rank	Name	Canton	A1973	A2010	dA	L2010	Year
			(km^2)	(km^2)	(%)	(km)	
1	Grosser Aletschgletscher	VS	86.63	78.38	-9.52	23.58	2011
2	Gornergletscher	VS	57.77	51.55	-10.77	13.43	2009
3	Fieschergletscher	VS	32.65	29.48	-9.72	15.38	2011
4	Unteraargletscher	VS	27.15	22.51	-17.09	12.62	2009
5	Oberaletschgletscher	VS	21.62	17.47	-19.17	9.16	2011
6	Unterer Grindelwald	BE	19.96	16.70	-16.33	8.05	2011
7	Findelengletscher	VS	18.62	16.24	-12.81	7.47	2009
8	Rhonegletscher	VS	17.44	15.31	-12.19	10.06	2010
9	Glacier de Corbassière	VS	16.18	15.22	-5.97	9.75	2010
10	Triftgletscher	BE	17.18	14.91	-13.23	6.42	2010
11	Vadret da Morteratsch	GR	16.79	14.87	-11.48	7.43	2009
12	Feegletscher	VS	16.62	14.57	-12.29	4.59	2009
13	Zmuttgletscher	VS	16.85	13.74	-18.48	7.87	2010
14	Glacier de Zinal	VS	15.70	13.36	-14.90	7.29	2010
15	Hüfifirn	UR	13.77	12.72	-7.60	7.15	2010
16	Glacier d'Otemma	VS	16.64	12.59	-24.33	7.07	2010
17	Kanderfirn	BE	13.76	12.23	-11.11	6.28	2011
18	Gauligletscher	BE	13.76	11.40	-17.13	6.38	2010
19	Glacier du Mont Miné	VS	11.09	9.91	-10.72	5.44	2010
20	Allalingletscher	VS	9.98	9.17	-8.11	6.77	2009
21	Glacier de Ferpècle	VS	9.90	9.01	-9.04	6.07	2010
22	Oberer Grindelwaldgletscher	BE	9.42	8.42	-10.65	6.22	2009
23	Langgletscher	VS	9.52	8.27	-13.18	6.39	2011
24	Riedgletscher	VS	8.31	7.32	-11.92	5.33	2011
25	Glacier de la Plaine Morte	BE	9.09	7.29	-19.74	3.73	2010
26	Steingletscher	BE	8.81	7.28	-17.34	4.23	2010
27	Glacier du Breney	VS	9.96	7.11	-28.63	6.25	2010
28	Mittelaletschgletscher	VS	8.31	6.86	-17.49	5.33	2011
29	Vadret da Roseg	GR	8.78	6.82	-22.41	3.72	2009
30	Glacier de Saleina	VS	7.77	6.54	-15.79	6.40	2010
31	Vadrec del Forno	GR	8.82	6.26	-29.08	5.80	2009
32	Glacier du Mont Durand	VS	7.63	6.05	-20.65	5.50	2010
33	Glacier du Trient	VS	6.40	5.82	-8.98	4.40	2010
34	Brungegggletscher	VS	6.75	5.53	-18.17	4.72	2011
35	Glacier du Mont Collon	VS	6.18	5.44	-12.1	5.11	2010
36	Rosenlauigletscher	BE	6.14	5.40	-12.06	4.70	2009
37	Vadret da Palü	GR	6.64	5.27	-20.64	2.54	2009
38	Glacier de Moming	VS	6.36	5.26	-17.23	3.26	2010
39	Tschingelfirn	BE	6.19	5.23	-15.53	4.13	2011

Rank	Name	Canton	A1973	A2010	dA	L2010	Year
			(km^2)	(km^2)	(%)	(km)	
40	Schwarzberggletscher	VS	5.48	5.17	-5.58	4.11	2009
41	Glacier du Giétro	VS	5.85	5.17	-11.68	4.45	2010
42	Turtmanngletscher	VS	5.99	5.17	-13.73	5.87	2010
43	Vadret da Tschierva	GR	7.03	5.09	-27.56	3.96	2009
44	Glacier de Moiry	VS	5.77	4.90	-15.14	5.07	2010
45	Griesgletscher	VS	6.43	4.79	-25.47	5.48	2009
46	Mellichgletscher	VS	5.32	4.69	-11.79	3.11	2009
47	Hohlichtgletscher	VS	5.51	4.36	-20.89	4.30	2010
48	Dammagletscher	UR	5.16	4.25	-17.62	2.15	2010
49	Oberaargletscher	BE	5.18	4.1	-20.85	4.83	2009
50	Üssre Baltschiedergletscher	VS	4.84	3.85	-20.48	2.90	2011
51	Bisgletscher	VS	4.81	3.83	-20.33	3.69	2010
52	Furgggletscher	VS	5.37	3.79	-29.36	3.72	2010
53	Glacier de Cheillon	VS	4.56	3.60	-20.91	3.83	2010
54	Haut Glacier d'Arolla	VS	5.81	3.46	-40.46	3.69	2010
55	Stufesteigletscher	BE	4.21	3.37	-20.00	3.24	2011
56	Hohberggletscher	VS	3.45	3.20	-7.06	4.28	2009
57	Glacier de Tsidjiore Nouve	VS	3.20	2.73	-14.64	5.00	2010
58	Breithorngletscher	BE	3.42	2.71	-20.69	3.64	2011
59	Glatt Firn	UR	3.05	2.71	-11.32	2.76	2010
60	Silvrettagletscher	GR	3.25	2.68	-17.65	3.29	2008
61	Glacier de Tsanfleuron	VS	3.81	2.65	-30.63	2.90	2010
62	Oberer Theodulgletscher	VS	3.38	2.60	-23.16	2.75	2010
63	Bifertenfirn	GL	2.89	2.52	-12.56	4.40	2010
64	Vadrec d'Albigna	GR	3.76	2.50	-33.48	3.42	2009
65	Flachensteinfirn	UR	3.09	2.46	-20.21	1.62	2010
66	Wildstrubelgletscher	VS	3.34	2.34	-29.75	2.50	2010
67	Brunnifirn	UR	3.02	2.31	-23.62	3.52	2010
68	Minstigergletscher	VS	2.83	2.25	-20.41	3.11	2009
69	Blümlisalpgletscher	BE	3.00	2.23	-25.60	2.47	2011
70	Claridenfirn	GL	2.39	2.20	-7.67	2.93	2010
71	Alpjergletscher	VS	3.04	2.17	-28.88	1.87	2011
72	Hohwänggletscher	VS	2.54	2.15	-15.47	2.53	2010
73	Hohlaubgletscher	VS	2.39	2.11	-12.06	3.65	2009
74	Blüemlisalpfirn	UR	2.52	2.10	-16.55	2.33	2010
75	Triftgletscher (Zermatt)	VS	2.46	2.04	-17.17	2.79	2010
76	Driestgletscher	VS	2.39	2.03	-15.14	2.08	2011
77	Paradiesgletscher	GR	4.57	2.02	-55.71	1.82	2009
78	Triftgletscher (Fiescher)	VS	2.42	2.01	-17.04	2.96	2011
79	Tiefengletscher	UR	3.20	2.00	-37.62	2.71	2010
80	Vadrec da Fedoz	GR	2.57	1.97	-23.29	2.42	2009
81	Vadret da Grialetsch	GR	3.24	1.92	-40.67	1.67	2009
82	Glacier de L'A Neuve	VS	2.38	1.92	-19.45	1.83	2010
83	Glacier de Valsorey	VS	2.36	1.91	-19.28	3.8	2010

84 Ghiacciaio del Basòdino TI 2.32 1.89 -18.34 1.5 2009 85 Limmernfirn GL 2.35 1.89 -19.41 3.13 2010 86 Vadret dal Trenoggia GR 2.53 1.88 -25.59 2.22 2009 87 Üsser Talgletscher VS 2.38 1.87 -21.50 1.26 2011 88 Glatscher da Medel GR 2.18 1.86 -14.87 2.36 2010 90 Vadret Tiatscha GR 2.12 1.33 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.75 -19.69 3.10 2009 92 Kehlengletscher VS 2.15 1.71 -14.00 1.84 2011 93 Gabelhorngletscher VS 2.34 1.69 -27.78 2.37 2011 94 Heigsteragletscher VS 2.34 1.69 -27.78 2.37 2011<	Rank	Name	Canton	A1973 (km ²)	A2010 (km ²)	dA (%)	L2010 (km)	Year
85 Limmernfirn GL 2.35 1.89 -19.41 3.13 2010 86 Vadret dal Tremoggia GR 2.53 1.88 -25.59 2.22 2009 87 Üsser Talgletscher VS 2.38 1.87 -21.50 1.26 2011 88 Glatischer da Medel GR 2.18 1.86 -14.87 2.36 2.05 2010 90 Vadret Tiatscha GR 2.12 1.83 -13.93 2.05 2010 91 Festigletscher VS 2.15 1.71 -16.93 3.10 2009 92 Kehlengletscher VS 2.15 1.71 -14.00 1.84 2011 94 Guggigletscher VS 2.15 1.66 -9.02 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -9.02 2.56 2009 98 Triftgletscher VS 2.15 1.65 -23.23 2.44	84	Ghiacciaio del Basòdino	ΤI	2.32	1.89	-18.34	1.5	2009
86 Vadret dal Tremoggia GR 2.53 1.88 -25.59 2.22 2009 87 Üsser Talgletscher VS 2.38 1.87 -21.50 1.26 2010 86 Glatscher da Medel GR 2.18 1.85 -25.03 2.05 2008 90 Vadret Tiatscha GR 2.12 1.83 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.75 -19.69 31.0 2009 92 Kehlengletscher UR 2.05 1.74 -15.48 3.39 2010 93 Gabelhorngletscher VS 2.15 1.71 -20.72 2.50 2010 94 Guggigletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -23.72 2.010 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2.009 90 Hohbalmgletscher VS 2.07 1.63 -11.62 2.	85	Limmernfirn	GL	2.35	1.89	-19.41	3.13	2010
87 Üsser Talgletscher VS 2.38 1.87 -21.50 1.26 2011 88 Glatscher da Medel GR 2.18 1.86 -14.87 2.36 2010 90 Glacier de la Tsesette VS 2.46 1.85 -25.03 2.05 2010 90 Vadret Tiatscha GR 2.12 1.33 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.75 -19.69 3.10 2009 92 Kehlengletscher UR 2.05 1.74 -15.48 3.90 2010 93 Gabelhorngletscher VS 2.15 1.71 -20.72 2.50 2010 94 Guggigletscher VS 2.34 1.69 -27.78 2.37 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.22 2.50 2009 96 Hohbalmgletscher VS 2.01 1.64 -17.12 2.52 2009 90 Glacier du Weisshorn VS 2.07 1.63 -21.6	86	Vadret dal Tremoggia	GR	2.53	1.88	-25.59	2.22	2009
88 Glatscher da Medel GR 2.18 1.86 -14.87 2.36 2010 89 Glacier de la Tsesette VS 2.46 1.85 -25.03 2.05 2010 90 Vadret Tiatscha GR 2.12 1.83 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.74 -15.48 3.39 2010 92 Kehlengletscher VS 2.15 1.71 -10.69 3.10 2009 93 Gabelhorngletscher VS 2.15 1.71 -14.00 1.84 2011 94 Guggigletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2001 101 Glacier de Boveyre VS 2.01 1.49 -26.00 1.89 2011 118 Kaltwassergletscher VS 1.75 1.47 -1	87	Üsser Talgletscher	VS	2.38	1.87	-21.50	1.26	2011
89 Glacier de la Tsesette VS 2.46 1.85 -25.03 2.05 2010 90 Vadret Tiatscha GR 2.12 1.83 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.75 -19.69 3.10 2009 92 Kehlengletscher VS 2.15 1.71 -15.48 3.39 2010 93 Gabelhorngletscher BE 1.98 1.71 -14.00 1.84 2011 94 Guggigletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.64 -17.12 2.52 2000 100 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2011 111 Eigergletscher VS 2.07 1.63 -21.62 2.59 2011 1.14 Haka 2012 2012 1.11 Ikkatwassergletscher VS 2.01 <td>88</td> <td>Glatscher da Medel</td> <td>GR</td> <td>2.18</td> <td>1.86</td> <td>-14.87</td> <td>2.36</td> <td>2010</td>	88	Glatscher da Medel	GR	2.18	1.86	-14.87	2.36	2010
90 Vadret Tiatscha GR 2.12 1.83 -13.93 2.05 2008 91 Festigletscher VS 2.17 1.75 -19.69 3.10 2009 92 Kehlengletscher VS 2.15 1.74 -15.48 3.39 2010 93 Gabelhorngletscher VS 2.15 1.71 -14.00 1.84 2011 94 Guggigletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2011 96 Hengsterengletscher WS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 2.17 1.64 -17.12 2.52 2009 101 Glacier du Weisshorn VS 2.07 1.63 -21.62 2.59 2011 117 Eigergletscher VS 2.01 1.49 -26.00 1.89 2011 123 Seewijnengletscher VS 1.75 1.47 -16.17 <td>89</td> <td>Glacier de la Tsesette</td> <td>VS</td> <td>2.46</td> <td>1.85</td> <td>-25.03</td> <td>2.05</td> <td>2010</td>	89	Glacier de la Tsesette	VS	2.46	1.85	-25.03	2.05	2010
91 Festigletscher VS 2.17 1.75 -19.69 3.10 2009 92 Kehlengletscher UR 2.05 1.74 -15.48 3.39 2010 93 Gabelhorngletscher VS 2.15 1.71 -20.72 2.50 2010 94 Guggigletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2010 96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.64 -17.12 2.52 2009 90 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2010 117 Eigergletscher VS 2.01 1.49 -26.00 1.89 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2010 125 Wallenburfin UR 1.71 1.42 -17.08<	90	Vadret Tiatscha	GR	2.12	1.83	-13.93	2.05	2008
92 Kehlengletscher UR 2.05 1.74 -15.48 3.39 2010 93 Gabelhorngletscher VS 2.15 1.71 -20.72 2.50 2010 94 Guggigletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2010 96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.04 1.64 -19.68 2.60 2101 101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2011 118 Kaltwassergletscher VS 2.07 1.63 -21.62 2.59 2011 119 Glacier de Tseudet VS 1.75 1.47 -16.17 2.87 2010 123 Seewjinengletscher VS 1.81 1.42 </td <td>91</td> <td>Festigletscher</td> <td>VS</td> <td>2.17</td> <td>1.75</td> <td>-19.69</td> <td>3.10</td> <td>2009</td>	91	Festigletscher	VS	2.17	1.75	-19.69	3.10	2009
93 Gabelhorngletscher VS 2.15 1.71 -20.72 2.50 2010 94 Guggigletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2019 96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2009 100 Glacier du Weisshorn VS 2.04 1.64 -21.62 2.59 2011 117 Eigergletscher VS 2.01 1.49 -26.00 1.89 2011 118 Kaltwassergletscher VS 1.81 1.42 -21.13 1.84 2009 123 Seewjinengletscher VS 1.81 1.42 <td>92</td> <td>Kehlengletscher</td> <td>UR</td> <td>2.05</td> <td>1.74</td> <td>-15.48</td> <td>3.39</td> <td>2010</td>	92	Kehlengletscher	UR	2.05	1.74	-15.48	3.39	2010
94 Guggjeletscher BE 1.98 1.71 -14.00 1.84 2011 95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2011 96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.65 -33.23 2.44 2009 99 Hohbalmgletscher VS 2.04 1.64 -19.68 2.60 2010 101 Glacier du Weisshorn VS 2.04 1.64 -27.85 2.59 2011 117 Eigergletscher VS 2.01 1.49 -26.00 1.89 2011 118 Kaltwassergletscher VS 1.81 1.42 -21.13 1.84 2009 123 Seewijnengletscher VS 1.81 1.42 -21.3 1.84	93	Gabelhorngletscher	VS	2.15	1.71	-20.72	2.50	2010
95 Weissmiesgletscher VS 2.34 1.69 -27.78 2.37 2011 96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2000 100 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2010 117 Eigergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -60.00 1.89 2011 123 Seewjinengletscher VS 1.81 1.47 -16.17 2.87 2010 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 135 Glacier d'Orny VS 1.55 1.27	94	Guggigletscher	BE	1.98	1.71	-14.00	1.84	2011
96 Hengsterengletscher BE 1.87 1.68 -9.92 2.56 2009 97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2000 100 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2010 117 Eigergletscher VS 2.07 1.63 -21.62 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 119 Glacier de Tseudet VS 1.75 1.47 -16.17 2.87 2010 123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 <td>95</td> <td>Weissmiesgletscher</td> <td>VS</td> <td>2.34</td> <td>1.69</td> <td>-27.78</td> <td>2.37</td> <td>2011</td>	95	Weissmiesgletscher	VS	2.34	1.69	-27.78	2.37	2011
97 Vadret da Porchabella GR 2.62 1.68 -36.13 2.20 2009 98 Triftgletscher (Weissmies) VS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2009 100 Glacier du Weisshorn VS 2.04 1.64 -17.12 2.52 2010 101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2011 118 Kaltwassergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 123 Seewjinengletscher VS 1.75 1.47 -16.17 2.87 2010 124 Glärnischfirn GL 2.10 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 135 Glacier d'Orny VS 1.91 1.28 <td>96</td> <td>Hengsterengletscher</td> <td>BE</td> <td>1.87</td> <td>1.68</td> <td>-9.92</td> <td>2.56</td> <td>2009</td>	96	Hengsterengletscher	BE	1.87	1.68	-9.92	2.56	2009
98 Triftgletscher (Weissmies) VS 2.15 1.65 -23.23 2.44 2009 99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2009 100 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2010 101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 136 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 135 Glacier d'Orny VS 1.55 1.27 -18.16 2.62	97	Vadret da Porchabella	GR	2.62	1.68	-36.13	2.20	2009
99 Hohbalmgletscher VS 1.97 1.64 -17.12 2.52 2009 100 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2010 101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2010 117 Eigergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 136 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03	98	Triftgletscher (Weissmies)	VS	2.15	1.65	-23.23	2.44	2009
100 Glacier du Weisshorn VS 2.04 1.64 -19.68 2.60 2010 101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2010 117 Eigergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 123 Seewijinengletscher VS 1.75 1.47 -16.17 2.87 2010 124 Glärnischfirn GL 2.10 1.42 -21.13 1.84 2009 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 135 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher VS 1.98 1.18 -40.30 2.02 2011 143 Glatscher dil Vorab GR 2.59 1.23 <td< td=""><td>99</td><td>Hohbalmgletscher</td><td>VS</td><td>1.97</td><td>1.64</td><td>-17.12</td><td>2.52</td><td>2009</td></td<>	99	Hohbalmgletscher	VS	1.97	1.64	-17.12	2.52	2009
101 Glacier de Boveyre VS 2.07 1.63 -21.62 2.59 2010 117 Eigergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 119 Glacier de Tseudet VS 1.75 1.47 -16.17 2.87 2010 123 Seewijnengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher BE 1.76 1.24 -29.76 1.79 2011 143 Glatscher dil Vorab GR 2.59 1.23 -52.64 1.79 2008 150 Rossbodengletscher VS 1.64 1.09	100	Glacier du Weisshorn	VS	2.04	1.64	-19.68	2.60	2010
117 Eigergletscher BE 2.13 1.54 -27.85 2.59 2011 118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 119 Glacier de Tseudet VS 1.75 1.47 -16.17 2.87 2010 123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 136 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher VS 1.98 1.18 -40.30 2.02 2011 145 Schwarzgletscher VS 1.64 1.09 -	101	Glacier de Boveyre	VS	2.07	1.63	-21.62	2.59	2010
118 Kaltwassergletscher VS 2.01 1.49 -26.00 1.89 2011 119 Glacier de Tseudet VS 1.75 1.47 -16.17 2.87 2010 123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 136 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher BE 1.76 1.24 -29.76 1.79 2011 143 Glatscher dil Vorab GR 2.59 1.23 -52.64 1.79 2008 150 Rossbodengletscher VS 1.64 1.09	117	Eigergletscher	BE	2.13	1.54	-27.85	2.59	2011
119Glacier de TseudetVS1.751.47-16.172.872010123SeewjinengletscherVS1.811.42-21.131.842009124GlärnischfirnGL2.101.42-32.422.322010125WallenburfirnUR1.711.42-17.082.272010135Glacier de l'En DarreyVS1.911.28-32.731.752010136Glacier d'OrnyVS1.551.27-18.162.622010138Vadret dal CambrenaGR1.721.27-26.262.032009141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010175LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR<	118	Kaltwassergletscher	VS	2.01	1.49	-26.00	1.89	2011
123 Seewjinengletscher VS 1.81 1.42 -21.13 1.84 2009 124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 136 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher BE 1.76 1.24 -29.76 1.79 2011 143 Glatscher dil Vorab GR 2.59 1.23 -52.64 1.79 2008 150 Rossbodengletscher VS 1.64 1.09 -33.23 3.48 2010 171 Dungelgletscher BE 1.21 0.93 -22.68 1.65 2010 172 Rotfirn (Nord) UR 1.22 0.92 -2	119	Glacier de Tseudet	VS	1.75	1.47	-16.17	2.87	2010
124 Glärnischfirn GL 2.10 1.42 -32.42 2.32 2010 125 Wallenburfirn UR 1.71 1.42 -17.08 2.27 2010 135 Glacier de l'En Darrey VS 1.91 1.28 -32.73 1.75 2010 136 Glacier d'Orny VS 1.55 1.27 -18.16 2.62 2010 138 Vadret dal Cambrena GR 1.72 1.27 -26.26 2.03 2009 141 Gamchigletscher BE 1.76 1.24 -29.76 1.79 2011 143 Glatscher dil Vorab GR 2.59 1.23 -52.64 1.79 2008 150 Rossbodengletscher VS 1.64 1.09 -33.23 3.48 2010 158 Grand Désert VS 1.64 1.09 -32.268 1.65 2010 171 Dungelgletscher BE 1.21 0.93 -22.68 1.65 2010 172 Rotfirn (Nord) UR 1.22 0.92 -24.78<	123	Seewjinengletscher	VS	1.81	1.42	-21.13	1.84	2009
125WallenburfirnUR1.711.42-17.082.272010135Glacier de l'En DarreyVS1.911.28-32.731.752010136Glacier d'OrnyVS1.551.27-18.162.622010138Vadret dal CambrenaGR1.721.27-26.262.032009141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.641.09-33.233.482010158Grand DésertVS1.641.09-33.233.482010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.070.70-60.350.772010212Vadret CalderasGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS	124	Glärnischfirn	GL	2.10	1.42	-32.42	2.32	2010
135Glacier de l'En DarreyVS1.911.28-32.731.752010136Glacier d'OrnyVS1.551.27-18.162.622010138Vadret dal CambrenaGR1.721.27-26.262.032009141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.090.71-34.251.842009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherVS0.790.61-22.721.152010232Lämmerengletscher	125	Wallenburfirn	UR	1.71	1.42	-17.08	2.27	2010
136Glacier d'OrnyVS1.551.27-18.162.622010138Vadret dal CambrenaGR1.721.27-26.262.032009141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherGR1.170.61-47.471.062009232LämmerengletscherVS0.910.61-22.721.152010	135	Glacier de l'En Darrey	VS	1.91	1.28	-32.73	1.75	2010
138Vadret dal CambrenaGR1.721.27-26.262.032009141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherGR1.170.61-47.471.062009232LämmerengletscherVS0.790.61-22.721.152010	136	Glacier d'Orny	VS	1.55	1.27	-18.16	2.62	2010
141GamchigletscherBE1.761.24-29.761.792011143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherVS0.790.61-22.721.152010232LämmerengletscherVS0.790.61-22.721.152010	138	Vadret dal Cambrena	GR	1.72	1.27	-26.26	2.03	2009
143Glatscher dil VorabGR2.591.23-52.641.792008150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherVS0.790.61-22.721.152010232LämmerengletscherVS0.990.61-22.721.152010	141	Gamchigletscher	BE	1.76	1.24	-29.76	1.79	2011
150RossbodengletscherVS1.981.18-40.302.022011155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherVS0.790.61-22.721.152010232LämmerengletscherVS0.790.61-22.721.152010	143	Glatscher dil Vorab	GR	2.59	1.23	-52.64	1.79	2008
155SchwarzgletscherVS1.641.09-33.233.482010158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231SurettagletscherVS0.790.61-22.721.152010232LämmerengletscherVS0.790.61-22.721.152010	150	Rossbodengletscher	VS	1.98	1.18	-40.30	2.02	2011
158Grand DésertVS1.891.06-43.741.742010171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.770.70-60.350.772010212Vadret CalderasGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231Surettagletscher (West)GR1.170.61-47.471.062009232LämmerengletscherVS0.790.61-22.721.152010	155	Schwarzgletscher	VS	1.64	1.09	-33.23	3.48	2010
171DungelgletscherBE1.210.93-22.681.652010172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.770.70-60.350.772010212Vadret CalderasGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231Surettagletscher (West)GR1.170.61-47.471.062009232LämmerengletscherVS0.790.61-22.721.152010	158	Grand Désert	VS	1.89	1.06	-43.74	1.74	2010
172Rotfirn (Nord)UR1.220.92-24.782.052010182GriessenfirnOW1.280.87-32.471.652010195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.770.70-60.350.772010212Vadret CalderasGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231Surettagletscher (West)GR1.170.61-47.471.062009232LämmerengletscherVS0.790.61-22.721.152010	171	Dungelgletscher	BE	1.21	0.93	-22.68	1.65	2010
182 Griessenfirn OW 1.28 0.87 -32.47 1.65 2010 195 Läntagletscher GR 1.40 0.82 -41.50 2.30 2009 206 Verstanklagletscher GR 1.09 0.71 -34.25 1.84 2008 208 Glatscher da Lavaz GR 1.77 0.70 -60.35 0.77 2010 212 Vadret Calderas GR 1.06 0.67 -37.18 1.16 2009 220 Glatscher da Punteglias GR 0.93 0.64 -31.31 2.00 2010 225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010	172	Rotfirn (Nord)	UR	1.22	0.92	-24.78	2.05	2010
195LäntagletscherGR1.400.82-41.502.302009206VerstanklagletscherGR1.090.71-34.251.842008208Glatscher da LavazGR1.770.70-60.350.772010212Vadret CalderasGR1.060.67-37.181.162009220Glatscher da PuntegliasGR0.930.64-31.312.002010225Glacier de TortinVS1.120.63-43.861.642010231Surettagletscher (West)GR1.170.61-47.471.062009232LämmerengletscherVS0.790.61-22.721.152010	182	Griessenfirn	OW	1.28	0.87	-32.47	1.65	2010
206 Verstanklagletscher GR 1.09 0.71 -34.25 1.84 2008 208 Glatscher da Lavaz GR 1.77 0.70 -60.35 0.77 2010 212 Vadret Calderas GR 1.06 0.67 -37.18 1.16 2009 220 Glatscher da Punteglias GR 0.93 0.64 -31.31 2.00 2010 225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010	195	Läntagletscher	GR	1.40	0.82	-41.50	2.30	2009
208 Glatscher da Lavaz GR 1.77 0.70 -60.35 0.77 2010 212 Vadret Calderas GR 1.06 0.67 -37.18 1.16 2009 220 Glatscher da Punteglias GR 0.93 0.64 -31.31 2.00 2010 225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010	206	Verstanklagletscher	GR	1.09	0.71	-34.25	1.84	2008
212 Vadret Calderas GR 1.06 0.67 -37.18 1.16 2009 220 Glatscher da Punteglias GR 0.93 0.64 -31.31 2.00 2010 225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010	208	Glatscher da Lavaz	GR	1.77	0.70	-60.35	0.77	2010
220 Glatscher da Punteglias GR 0.93 0.64 -31.31 2.00 2010 225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010	212	Vadret Calderas	GR	1.06	0.67	-37.18	1.16	2009
225 Glacier de Tortin VS 1.12 0.63 -43.86 1.64 2010 231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010 233 Einnalpeligistscher (Oct) OW 0.81 0.61 -24.45 1.23 2010	220	Glatscher da Punteglias	GR	0.93	0.64	-31.31	2.00	2010
231 Surettagletscher (West) GR 1.17 0.61 -47.47 1.06 2009 232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010 232 Einnalpeligistscher OW 0.81 0.61 -24.45 1.23 2010	225	Glacier de Tortin	VS	1.12	0.63	-43.86	1.64	2010
232 Lämmerengletscher VS 0.79 0.61 -22.72 1.15 2010 232 Einnalpeligletscher OW 0.81 0.61 24.45 1.23 2010	231	Surettagletscher (West)	GR	1.17	0.61	-47.47	1.06	2009
222 Eirpalpoligletschar ($(0,t)$) $((0,t)$ $(0,0)$ $(0,0)$ $(0,1)$ $($	232	Lämmerengletscher	VS	0.79	0.61	-22.72	1.15	2010
255 rimalpengietscher (Ost) Ovv 0.61 0.01 -24.45 1.25 2010	233	Firnalpeligletscher (Ost)	OW	0.81	0.61	-24.45	1.23	2010

Rank	Name	Canton	A1973 (km ²)	A2010 (km ²)	dA (%)	L2010 (km)	Year
	A		(1011)	(1411)	(70)	(1.1.7)	
245	Ammertengletscher	BE	1.17	0.56	-52.58	1.78	2010
263	Vadrecc di Bresciana	11	0.86	0.48	-44.31	0.75	2009
272	Sardonagletscher	SG	0.84	0.45	-45.68	0.64	2008
276	Geltengletscher	BE	0.83	0.45	-45.57	0.84	2010
284	Ghiacciaio del Cavagnoli	TI	1.33	0.43	-67.72	1.17	2009
296	Griessfirn	UR	0.89	0.41	-53.77	0.55	2010
306	Vadret da Sesvenna	GR	0.69	0.38	-44.35	0.97	2009
319	Muttgletscher	VS	0.57	0.37	-35.76	1.01	2009
320	Glacier des Martinets	VD	0.59	0.36	-37.68	1.06	2010
336	Plattalva	GL	0.74	0.34	-54.04	0.93	2010
349	Ghiacciaio di Valleggia	ΤI	0.59	0.31	-47.50	1.25	2009
355	Glacier de Pierredar	VD	0.50	0.30	-39.96	0.42	2010
357	Glacier de Paneyrosse	VD	0.46	0.30	-34.58	0.59	2010
386	Glacier du Sex Rouge	VD	0.69	0.27	-60.8	0.64	2010
399	Hintersulzfirn	GL	0.20	0.26	33.74	0.96	2010
406	Vedreit da Camp	GR	0.56	0.26	-54.52	0.71	2009
451	St. Annafirn	UR	0.44	0.22	-50.63	0.68	2010
458	Glacier du Prapio	VD	0.28	0.21	-24.58	0.70	2010
459	Scalettagletscher	GR	0.67	0.21	-68.55	0.78	2009
476	Kessjengletscher	VS	0.60	0.19	-68.47	0.33	2009
590	Plan Névé	VD	0.20	0.12	-40.41	0.34	2010
598	Ghiacciaio Grande di Croslina	ΤI	0.35	0.12	-65.74	0.45	2009
627	Ghiacciaio del Corno	ΤI	0.27	0.11	-59.95	0.57	2009
669	Pizolgletscher	SG	0.29	0.09	-69.70	0.42	2008
737	Bella Tola Gletscher	VS	0.25	0.07	-71.47	0.28	2010
846	Ofentalgletscher	VS	0.41	0.05	-88.08	0.17	2009

The Swiss Glaciers 2009/10 and 2010/11

References

- Antoni, C. (2005). Langjährige Messreihen in den Schweizer Alpen. Praktikumsararbeit ausgeführt an der VAW, ETH Zürich, unter Anleitung von A. Bauder (unveröffentlicht).
- Bauder, A., Funk, M., and Bösch, H. (2002). Glaziologische Untersuchungen am Glacier de Giétro im Zusammenhang mit der Sicherheit der Stauanlage Mauvoisin. In *Moderne Methoden und Konzepte im Wasserbau*, volume 175, (Band 2), pages 419–431. Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich. Internationales Symposium 7.-9. Oktober 2002 in Zürich.
- Bauder, A., Funk, M., and Huss, M. (2007). Ice volume changes of selected glaciers in the Swiss Alps since the end of the 19th century. *Annals of Glaciology*, 46:145–149.
- Begert, M., Schlegel, T., and Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of switzerland from 1864 to 2000. *International Journal of Climatology*, 25(1):65–80.
- Evans, I. S. (2006). Glacier distribution in the Alps: Statistical modelling of altitude and aspect. *Geografiska Annaler*, 88(2):115–133.
- Finger, D., Hugentobler, A., Huss, M., Voinesco, A., Wernli, H., Fischer, D., Weber, E., Jeannin, P.-Y., Kauzlaric, M., Wirz, A., Vennemann, T., Hüsler, F., Schädler, B., and Weingartner, R. (2013). Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability. *Hydrology and Earth System Sciences*, 17(8):3261–3277.
- Firnberichte (1914–1978). Der Firnzuwachs 1913/14–1976/77 in einigen schweizerischen Firngebieten, number 1-64 in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. Jahresberichte herausgegeben von der Gletscher-Kommission der Physikalischen Gesellschaft Zürich, später Schweizerische Meteorologische Zentralanstalt und ab 1973 durch A. Lemans.
- Fischer, M., Huss, M., Barboux, C., and Hoelzle, M. (2014). The new swiss glacier inventory SGI2010: Relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic, Antarctic, and Alpine Research, 46(4):933–945.
- Hoelzle, M., Haeberli, W., Dischl, M., and Peschke, W. (2003). Secular glacier mass balances derived from cumulative glacier length changes. *Global and Planetary Change*, 36(4):295–306.
- Huss, M. (2010). Mass balance of pizolgletscher. Geographica Helvetica, 65(2):80-91.

- Huss, M. and Bauder, A. (2009). 20th-century climate change inferred from four long-term point observations of seasonal mass balance. *Annals of Glaciology*, 50(50):207–214.
- Huss, M., Bauder, A., and Funk, M. (2009). Homogenization of long-term mass-balance time series. Annals of Glaciology, 50(50):198–206.
- Huss, M., Sold, L., Hoelzle, M., Stokvis, M., Salzmann, N., Farinotti, D., and Zemp, M. (2013). Towards remote monitoring of sub-seasonal glacier mass balance. *Annals of Glaciology*, 54(63):75–83.
- Joerg, P. C., Morsdorf, F., and Zemp, M. (2012). Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier. *Remote Sensing of Environment*, 127:118–129.
- Kasser, P., Aellen, M., and Siegenthaler, H. (1986). Clariden. In *Die Gletscher der Schweizer Alpen, 1977/78 und 1978/79*, volume 99/100 of *Glaziologisches Jahrbuch der Gletscherkommission SNG*, pages 142–148. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich.
- Machguth, H. (2008). On the use of RCM data and gridded climatologies for regional scale glacier mass balance modeling in high mountain topography : the example of the Swiss Alps. PhD thesis, University of Zürich. 176 pp.
- Machguth, H. and Huss, M. (2014). The length of the world's glaciers a new approach for the global calculation of center lines. *The Cryosphere*, 8(5):1741–1755.
- Maisch, M., Wipf, A., Denneler, B., Battaglia, J., and Benz, C. (2000). *Die Gletscher der Schweizer Alpen*. vdf, Hochschulverlag AG an der ETH Zürich, Zürich, 2. edition. Schlussbericht NFP31, 373 pp., ISBN 3 7281 2733 7.
- Müller, F., Caflisch, T., and Müller, G. (1976). Firn und Eis der Schweizer Alpen: Gletscherinventar. Publ. Nr. 57, Geographisches Institut der ETH Zürich, Zürich.
- Müller, H. and Kappenberger, G. (1991). Claridenfirn-Messungen 1914-1984. Technical Report 40, Zürcher Geographische Schriften, Geographisches Institut der ETH Zürich. pp. 79.
- Ohmura, A., Bauder, A., Müller, H., and Kappenberger, G. (2007). Long-term change of mass balance and the role of radiation. *Annals of Glaciology*, 46:367–374.
- Paul, F. (2003). The New Swiss Glacier Inventory 2000. Application of Remote Sensing and GIS. PhD thesis, University of Zürich. 192 pp.
- Paul, F., Barry, R., Cogley, G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, S., Raup, B., Rivera, A., and Zemp, M. (2010). Recommendations for the compilation of glacier inventory data from digital sources. *Annals of Glaciology*, 50(53):119–126.

- Paul, F., Frey, H., and Bris, R. L. (2011). A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results. *Annals of Glaciology*, 52(59):144–152.
- Paul, F., Maisch, M., Rothenbuhler, C., Hoelzle, M., and Haeberli, W. (2007). Calculation and visualisation of future glacier extent in the swiss alps by means of hypsographic modelling. *Global* and Planetary Change, 55(4):343–357.
- Raymond, M., Wegmann, M., and Funk, M. (2003). Inventar gefährlicher Gletscher in der Schweiz. Mitteilungen 182, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Gloriastrasse 37-39, CH-8092 Zürich. pp. 368.
- Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C., and Zemp, M. (2013). Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. *Journal of Glaciology*, 59(218):1047–1059.
- swisstopo (2010). SWISSIMAGE The Digital Color Orthophotomosaic of Switzerland. Swiss Federal Office of Topography. Product documentation.
- swisstopo (2013). swissALTI3D. Swiss Federal Office of Topography. Ausgabebericht 2013.
- VAW (1997). Gletscherveränderungen im Val de Bagnes 1966 1996. Untersuchungen im Zusammenhang mit den Anlagen der Kraftwerke Mauvoisin AG. Zusammenfassend dargestellte Hauptergebnisse der jährlichen Messungen. Bericht Nr. 7903.55.04 (M. Aellen, unveröffentlicht). Im Auftrag der Kraftwerke Mauvoisin AG.
- VAW (1998). Mauvoisin Giétrogletscher Corbassièregletscher. Glaziologische Studien im Zusammenhang mit den Stauanlagen Mauvoisin. Bericht Nr. 55.05.7903 (M. Funk, unveröffentlicht). Im Auftrag der Elektrizitätsgesellschaft Lauffenburg AG.
- VAW (1999). Mattmark Zusammenfassender Bericht über die hydrologischen und glaziologischen Messungen im Mattmarkgebiet. Bericht Nr. 7902.52.45 (H. Bösch und M. Funk, unveröffentlicht), Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. Im Auftrag der Kraftwerke Mattmark AG.
- WGMS (2013). Glacier Mass Balance Bulletin No. 12, (2010–2011). ICSU(FAGS)–IUGG(IACS)– UNEP–UNESCO–WMO, World Glacier Monitoring Service, Zurich.

Acknowledgements

The Cryospheric Commission again received solid support in this 131th/132th measuring period from its reliable team of observers. Sincere thanks for their cooperation are extended to: the forestry services from the cantons of Berne, Glarus, Grisons, Obwalden, St. Gallen, Uri, Ticino, Vaud and Wallis, the staff of the hydro-power stations Aegina, Mattmark and, Mauvoisin, all the individual helpers, the Aerial Photography Flying and Coordination Service (CCAP) of the Swiss Federal Office of Topography swisstopo and Photogrammetrie Perrinjaquet AG (Gümligen). The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of the ETH Zürich, colleagues from the national weather service MeteoSwiss, the Geographical Institutes of the University of Fribourg and Zürich provided valuable contributions to the publication of this glaciological report. Stephanie Usselmann and Simon Steffen helped with preparing data and general information. A special vote of thanks goes to Susan Braun-Clarke for translating and proof-reading the report.

A Remote Sensing

A.1 Aerial photographs

Aerial photographs were taken at periodic intervals in order to provide a baseline documentation for various applications (mapping, glacier change, natural hazards, etc). In addition to the periodical surveys conducted by the Swiss Federal Office of Topography (swisstopo), high resolution aerial photographs have been acquired which are designed in particular for glaciological applications. In addition to the aerial photographs listed in the following tables (A.1 and A.2), other aerial photos for updating the National Maps are available from swisstopo. In the year 2010, pictures were taken for the sheets 1:50'000 nos. 245, 246, 255, 256, 257, 258, 259, 262, 263, 268, 269, 272, 273, 282 and 283 and in 2011 for nos. 227, 247, 248, 249, 264, 265, 266, 267, 274, 275, 278 and 279. More detailed information is available on swisstopo's webviewer http://www.luftbildindex.ch.

Figure A.1: Aerial photographs from the years 2010 and 2011.

Table A.1: Aerial photographs taken in 2010.

Glaciers	Ct.	Date	Line No.	Scale	Туре
Albigna ^c , Forno ^p , Cantun ^c , Bondasca ^c ,	GR	22.09.10	2010066122	18400	b-w
Cengal ^c , Trubinasca ^p					
Allalin ^p , Chessjen ^p	VS	20.09.10	2010067003	8400	b-w
Allalin ^p , Hohlaub ^p , Kessjen ^c , Fee ^p , Ho-	VS	22.09.10	2010066022	15100	b-w
hbalm ^p , Ried ^p , Bider ^c					
Balfrin ^p , Ried ^p , Hohbalm ^p , Fee ^p , Chess-	VS	20.09.10	2010066024	12700	b-w
jen ^p , Hohlaub ^p , Allalin ^p					
Birch ^c , Nest ^c	VS	22.09.10	2010066504	10500	b-w
Corbassiere ^p	VS	22.09.10	2010068041	10700	b-w
Ferpecle ^c , Mont Mine ^c	VS	22.09.10	2010066085	15600	b-w
Ferpecle ^c , Mont Mine ^p , Zmutt ^p	VS	22.09.10	2010066084	16700	b-w
Findel ^p	VS	20.09.10	2010066040	11500	b-w
Forno ^c , Cantun ^p	GR	22.09.10	2010066123	18700	b-w
Gauli ^p	ΒE	21.09.10	2010066071	21900	b-w
Gietro ^p	VS	22.09.10	2010068001	9000	col
Gorner ^p	BS	20.09.10	2010066079	11900	b-w
Gries ^c , Corno ^p	VS	21.09.10	2010066013	12800	b-w
Grosser Aletsch ^p	VS	22.09.10	2010066016	14900	b-w
Grosser Aletsch ^p , Guggi ^c , Eiger ^c	VS	22.09.10	2010066021	17200	b-w
Gruben ^p	VS	20.09.10	2010066026	6100	b-w
Guggi ^c , Eiger ^p , Grosser Aletsch ^p	BE	22.09.10	2010070023	9400	b-w
Guggi ^p , Eiger ^p	BE	22.09.10	2010070020	13200	b-w
Gutz ^c , Ob. Grindelwald ^p	BE	21.09.10	2010066006	12200	b-w
Hengsteren ^p , Gutz ^c , Chrinnen ^p , Ob. Grindelwald ^p	BE	22.09.10	2010066505	14300	b-w
Hohlicht ^p , Bis ^p , Brunegg ^p , Turtmann ^p	VS	20.09.10	2010066030	14000	b-w
Minstiger ^c , Bächi ^p , Oberaar ^p , Galmi ^c	ΒE	21.09.10	2010066087	12500	b-w
Moiry ^p , Grand Cornier ^p , Bricola ^p , Zinal ^p	VS	22.09.10	2010066054	13200	b-w
Oberaar ^p	VS	21.09.10	2010065004	15700	b-w
Orny ^p , Saleina ^p , L'Aneuve ^p , Dolent ^c	VS	22.09.10	2010066089	11600	b-w
Rhone ^p	VS	20.09.10	2010066012	9800	b-w
Ried ^c , Fee ^p	VS	20.09.10	2010066065	19400	b-w
Ried ^p , Hohberg ^p , Festi ^p , Kin ^p , Weingarten ^p	VS	20.09.10	2010066029	16900	b-w
Rossboden ^c , Gruben ^p	VS	20.09.10	2010066035	14400	b-w
Schwarzberg ^p	VS	20.09.10	2010067005	8000	b-w
Seewjinen ^p , Tälliboden ^c	VS	20.09.10	2010067006	8900	b-w
Silvretta ^c , Verstancla ^c , Tiatscha ^p	GR	22.09.10	2010066001	14800	b-w
Trift ^p	ΒE	20.09.10	2010066004	8600	b-w
Turtmann ^p , Brunegg ^p	VS	20.09.10	2010066696	12600	b-w
Unt. Grindelwald ^p	BE	21.09.10	2010066007	15400	b-w
Unteraar (Finsteraar) ^p	VS	21.09.10	2010065001	14000	b-w
Unteraar (Lauteraar) ^p	VS	21.09.10	2010065002	13700	b-w
Unteraar ^p	VS	21.09.10	2010065003	10000	b-w

Glaciers	Ct.	Date	Line No.	Scale	Туре
Balfrin ^p , Bider ^c , Hohbalm ^p , Fall ^p , Fee ^p , Al-	VS	22.09.11	201109221136		is
lalin ^p , Hohlaub ^p , Kessjen ^p					
Birch ^c , Nest ^c , Bietsch ^p , Üssere	VS	28.09.11	201109281027		is
Baltschieder ^p					
Eiger ^c , Guggi ^c , Giesen ^p , Grosser Aletsch ^p ,	ΒE	28.09.11	201109281017		is
Jegi ^p					
Findelen ^p	VS	22.09.11	201109221102		is
Finsteraar ^p , Unteraar ^p , Lauteraar ^p	VS	28.09.11	201109281002		is
Gauli ^p	ΒE	28.09.11	201109281044		is
Gorner ^p	VS	22.09.11	201109221117		is
Gries ^c , Corno ^p , Blinnen ^p	VS	22.09.11	201109221014		is
Grosser Aletsch ^p	VS	30.09.11	201109301006		is
Gruben ^p , Gamsa ^p	VS	22.09.11	201109221146		is
Gutz ^c , Ob. Grindelwald ^p , Rosenlaui ^p	ΒE	28.09.11	201109281037		is
Lauteraar ^c , Ob. Grindelwald ^p , Finsteraar ^p ,	VS	28.09.11	201109281010		is
Unteraar ^p					
Mutten ^p , Witenwasseren ^c , Geren ^c , Chüebo-	VS	30.09.11	201109301031		is
den ^c , Pizzo Rotondo ^c					
Ob. Grindelwald ^p , Lauteraar ^p	ΒE	28.09.11	201109281058		is
Oberaar ^c , Finsteraar ^p , Fiescher ^p	VS	30.09.11	201109300955		is
Rhone ^p	VS	22.09.11	201109221004		is
Silvretta ^c , Verstancla ^c , Tiatscha ^p	GR	16.09.11	201109161101		is
Trift ^p	ΒE	22.09.11	201109220957		is
Turtmann ^p , Brunegg ^p , Bis ^p , Weisshorn ^p ,	VS	22.09.11	201109221051		is
Schali °, Moming °, Hohlicht °, Trift °					
Unt. Grindelwald ^p	ΒE	28.09.11	201109281106		is
Unteraar ^c , Lauteraar ^p , Finsteraar ^p	VS	28.09.11	201109281051		is
c Glacier shown completely		Type of acqu	uisition: hw bla	ck and y	vhite

Table A.2: Aerial photographs taken in 2011.

Glacier shown completely Glacier shown partially С р

Type of acquisition: b-w black-and-white

col colour is image stripe

B Remarks on Individual Glaciers

1 Rhone

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 22.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2 Mutt

2011: Die Höhen wurden zum wiederholten Male mit dem Höhenmesser am Taschenmesser gemessen. (U. Wittdorf)

3 Gries

2010: Luftbildaufnahmen am 21.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 22.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

4 Fiescher

2010: Beim Punkt 4 ist von der linken Talflanke ein grosser Stein auf den Gletscher gefallen. (P. Aschilier)

2011: Die Punkte 4 und 5 sind neu. (P. Aschilier)

5 Grosser Aletsch

2010: Luftbildaufnahmen am 22.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 28.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

7 Kaltwassergletscher

2010: Das leichte Vorrücken des Gletschers während der letzten Periode dürfte mit dem kühlen Frühjahr und auch dem Herbst bzw. Sommer zu tun haben. Nie konstant heisse Perioden auf dieser Höhe. (M. Schmidhalter)

2011: Der starke Rückgang ist wohl auf den milden, schneearmen Winter zurückzuführen. Die hohen Temperaturen auf dieser Höhe haben auch dazu beigetragen. (M. Schmidhalter)

10 Schwarzberg

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

11 Allalin

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

12 Chessjen

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

13 Fee

2010: Messung am 11.10.2010: Die Messpunkte C und D sind vom Aufnahmepunkt aus nicht mehr einsehbar. Der Gletscher zog sich hinter die Felskuppe zurück. (U. Andenmatten)

14 Gorner

2011: Die Bestimmung, ob Vorstoss oder Rückzug, erfolgt nicht vom Basispunkt aus. Orographisch links reicht das Eis unter Blockschutt weiter talsauswärts. (S. Walther)

15 Zmutt

2010: Luftbildaufnahmen am 1.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

16 Findelen

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 22.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

17 Ried

2010: Neuer Fixpunkt Nr. 74 wurde eingerichtet. Gletscherzunge hat sich 2009 losgetrennt! Einmessung des alten Toteisrandes und des neuen Zungenendes. (P. Rovina)

2011: Wegen der Steilheit des Geländes wird die Gletscherzunge, bei weiterem Rückgang, vom FP74 aus nicht mehr sichtbar sein; vermutlich bereits 2012(?). Im Vorfeld des Gletschers sind etliche Felsbrocken von jemanden nummeriert worden! Es wurden auch "Messpunkt"-Marken gesetzt! (P. Rovina)

18 Lang

2010: In den nächsten Jahren wird der Gletscher massiv an Länge und Dicke verlieren. (H. Henzen)

19 Turtmann

2010: Im Gletschervorfeld wurden auf 3 grösseren Steinblöcken Nummerbezeichnungen gefunden. Diese Punkte wurden mit den Distanzmessungen aus den Jahren 2004 und 2005 verglichen. Leider korrelieren diese Punkte nicht mit den Messungen aus diesen Jahren. Für Punkt 1 stimmen die Resultate in etwa, für die beiden anderen Punkte müssen hingegen näher zum Gletscher neue Messpunkte eingerichtet worden sein. Diese konnten im Spätherbst 2010 allerdings nicht mehr aufgefunden werden. Das Gletschervorfeld wird 2011 nochmals auf das Vorhandensein dieser Punkte abgesucht werden. Falls die Punkte nicht rekonstruiert werden können, müssen 2011 neue Messpunkte eingerichtet werden. Da sich der Gletscher inzwischen weit gegen die steile Felspartie zurückgezogen hat und ein weiterer Rückzug zu erwarten ist, ist auf einem markanten Felskopf ein neuer Messpunkt 5 errichtet worden. (A. Brigger)

2011: P5, MP1 und MP2 wurden neu mit Distanzmessung gemessen. Die Verschiebung MP2 erfolgte aufgrund des Vergleichs der GPS Aufnahmen 2010 und 2011. Für MP1 neu ist die Unsicherheit zu gross. P1 - P5 wurden ebenfalls auf Basis der GPS Aufnahme 2010/2011 ermittelt. (A. Brigger)

20 Brunegg

2010: Der Ausgangspunkt der Gletschermessung 2005 konnte mit grösster Wahrscheinlichkeit ermittelt werden. Es handelt sich um einen grossen Stein im Bachbett des Brunneggbaches. Für die Messung 2010 wurde auf einem grossen Felskopf ein neuer Messpunkt eingerichtet. Der Rückzug des Gletschers für den Zeitraum 2005 - 2010 beträgt auf Basis dieser Messpunkte 2010: -99 m. (A. Brigger)

2011: Starker Rückgang. An der Gletscherfront 2010 befindet sich noch Eis. Dieses ist aber vollständig vom Gletscher getrennt. (A. Brigger)

22 Zinal

2010: La largeur du glacier se retrécit. Le point C ne sera dorénavant plus mesuré car l'azimut de 225 g donne contre la moraine. (M. Barmaz)

2011: Comme le point C n'est plus mesurable, et que le point B" n'a plus été retrouvé, j'ai institué un point B"' qui sera relevé en 2012. (M. Barmaz)

23 Moming

2011: Mesures avec distance mètre laser (P. Stoebener)

24 Moiry

2010: Le recul de 32 m correspond au recul de deux ans, car je n'ai pas mesuré le recul de 2009 suite à la fermeture prématurée de la route. (M. Barmaz)

29 Cheillon

2011: Nouveauté: création d'un petit lac au pied du glacier côté est. Le glacier recule principalement sur les côtés, mais perd de sa masse. (O. Bourdin)

30 En Darrey

2011: Le processus entamé dans les années 2000 (année exacte inconue) de récession entre le glacier bas et haut est accentué. Le glacier bas est notamment "crevé" à 2 endroits et forme un tunnel de glace spectaculaire. Le recul est également important sur la partie haute. (O. Bourdin)

33 Tsanfleuron

2010: Reprise des mesures par le soussigné à partir de cette année. (P. Stoebener)

34 Otemma

2010: Comme toujours ici, les crues dues à la fonte ont complètement changé l'avant plateau. Le front du glacier s'est effondré rive gauche découvrant le socle rocheux sur lequel j'ai déterminé un nouveau Pt 17/10. Voir croquis ci-joint. Cela m'évitera le gymkhana des 723 mètres jusqu'au Pt 15/95, pour autant que lors de la prochaine crue, des gravats ne le couvre pas! Selon les chiffres, le retrait n'est pas très marqué, cependant sur le terrain la diminution de l'épaisseur de toute la langue est flagrante. (J.-J. Chabloz)

2011: Bonne surprise le nouveau Pt 17/10 est toujours apparent et la rive gauche de la langue est en forte diminution. Le recul est bien visible rive gauche sur la photographie de l'Aouille. L'année passée, il passait encore sous le glacier d'Otemma. Rive droite même situtation en plus accentué. Les cônes de glace couverts de gravats sur le plateau à l'avant du glacier ont pratiquement disparu. Nouvelle photographie du glacier d'Epicoune. (J.-J. Chabloz)

35 Mont Durand

2010: Affaissement de tout le front. Plus du tout de voûte au portail et de torrent rive gauche. Le socle rocheux est au point de visée sous les gravats, voir flèche sur la photo, j'ai donc modifié l'altitude du front, cependant rive droite le glacier est encore au niveau du torrent glacière. La fonte est également bien visible au plateau sous la Tête Blanche. (J.-J. Chabloz)

2011: Affaissement de tout le front rive droite avec pour effet de pousser la langue en avant, d'où avance du front. Cependant une grande modification du front se prépare au vu des gros pots qui s'ouvrent en amont où le socle se fait voir à plusieurs endroits cela jusque sous Tête Blanche. (J.-J. Chabloz)

36 Brenay

2010: Diminution de la masse bien marquée surtout rive droite, également au niveau des Séracs du Brenay. La langue glacière se couvre de plus en plus de torrents de surface et de nombreuses fissures et crevasses se forment tant rive gauche que droite. Sur la photo

vue aval, bonne vision du Glacier du Mont Durand entre le Mont Avril et la Tête Blanche. (J.-J. Chabloz)

2011: Rive droite la moraine laissée à l'avant du front, glace morte couverte de crevasses et de blocs en équilibre instables avec en plus le torrent glacière du portail droit me fait abandonner l'accès par ce côté ainsi que deux points de mesure. La langue frontale est par contre complètement abaissée du fait de sa diminution de masse d'où un recul assez marqué. J'ai pu ajouter un point sur ligne 22/08 et une belle roche moutonnée a fait jour sur cet axe de visée. Cela me permettra de recentrer mes mesures sans problème. Les repères 1 et 2 ne sont plus mesurables à cause des chutes de glace. J'ai établi un Pt 5 à l'opposé de la même ligne. (J.-J. Chabloz)

37 Gietro

2010: Luftbildaufnahmen am 22.9.2010, photogrammetrische Auswertung durch Photogrammetrie Perrinjaquet im Auftrag der Force Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch Photogrammetrie Perrinjaquet im Auftrag der Force Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ – A. Bauder)

38 Corbassiere

2010: Luftbildaufnahmen am 22.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Force Motrices de Mauvoisin SA. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Force Motrices de Mauvoisin SA. (VAW/ETHZ – A. Bauder)

39 Valsorey

2010: En rive gauche, l'espace entre le rocher et le glacier est passé de 5.0 à 10.0 m. La largeur visible de la langue frontale est de 6.4 m, elle se prolonge sous le éboulis en rive droite probablement d'une dizaine de mètres. (J. Médico)

2011: La largeur de la langue frontale est de 6.0 m, elle se prolonge sous les éboulis en rive droite probablement d'une dizaine de mètres. L'épaisseur de la langue est de 0.7 m. (J. Médico)

40 Tseudet

2010: Tout le bas du glacier est recouvert d'éboulis ce qui rend très difficile la détermination de la limite exacte du glacier. (J. Médico)

2011: Tout le bas du glacier est recouvert d'éboulis ce qui rend très difficile la dètermination des limites latérales. (J. Médico)

41 Boveyre

2011: Toute la mince langue de glacier a fondu, ce qui explique cet important recul. (J. Médico)

42 Saleinaz

2010: Le glacier a subi une très forte fonte de la partie centrale. (J. Médico)

2011: Le glacier a subi une très forte fonte en rive gauche. La petit langue glacière n'a pas été considérée dans la longueur, c'est la face du glacier qui e été prise pour calculer le retrait. (J. Médico)

43 Trient

2010: De 2009 à 2010, le glacier a avancé de 14 mètres, dans l'extrémité la plus en aval de la langue. Il ne s'agit pas d'un renforcement de la langue glaciaire, mais de glace éboulée qui s'étend un peu plus loin que la limite de l'année 2009. Dans l'ensemble, la langue perd en épaisseur. Le front se trouve à environ 2075 mètres d'altitude. (J. Ehinger)

2011: De 2010 à 2011, le front du glacier est resté au même endroit, pris dans un sillon rocheux gravé dans une forte pente. Comme en 2010, l'extrémité de la langue glaciaire est formée de glace éboulée qui s'étend un peu plus loin que la limite de l'année 2009. Dans l'ensemble, la langue perd en épaisseur. Le pourtour se rétracte légèrement en fonction de la fonte et des éboulements. Le front se trouve à environ 2075 mètres d'altitude. (J. Ehinger)

44 Paneyrosse

2011: diminution d'épaisseur au visuel plus de petits lacs La rimaye se morcelle (J.-Ph. Marlétaz)

45 Grand Plan Névé

2011: diminution de grotte plus de lac intérieur Au pt.38 apparition d'une petite grotte (diamètre 3 m) profondeur 10 m avec un lac intérieur (J.-Ph. Marlétaz)

47 Sex Rouge

2010: Les chutes de neige automnales ont empéché les mesures. (J. Binggeli)

2011: Pt 4: impossible de localiser la glace Pt 5: avande à confirmer en 2012 (erreur mesure 2009?) Pt 51: mesure fiabilité relative matériau de dejection et reliquat de névé Pt 6: la glace morte a fondu (J. Binggeli)

48 Prapio

2010: De la neige morte, détachée du corpus, et présente à l'avant du front glaciaire l'année dernière, a pratiquement disparu. J'ai ainsi implanté le point référence P1 plus en amont. Pour la bonne continuation des mesures, il a été rajouté à la mesure 2010, les 3 derniers mètres manquants entre l'ancien et le nouveau point. (J. Binggeli)

2011: La glace morte à l'avant du glacier a totalement fondu. (J. Binggeli)

52 Gauli

2010: Es sind weniger Eisberge auf dem wiederum grösser gewordenen See. Diese sind recht klein. Deshalb ist eine genaue Messung möglich. (R. Straub)

2011: Die maximale Grösse des Sees ist nahezu erreicht. Nur noch ca. ein Dutzend kleine Eisberge schwimmen im See. In Richtung der bis 2010 erfolgten Messung ist kein Gletscher mehr, nur noch bis weit hinauf Fels. Der Seespiegel hat sich seit 2002 jährlich um ganz wenige cm gesenkt, 2011 etwas mehr, ca. 20 cm, insgesamt ca. 30 cm. (R. Straub)

53 Stein

2010: Da sich die Gletscherzunge in eine Schlucht zurückzieht, wird die Messung immer schwieriger. Der Rückzug beschleunigt sich. (R. Straub)

54 Steinlimi

2011: Das Toteis auf der orographisch rechten Seite ist geschmolzen und hat nackten Fels und etwas Moränenschutt Platz gemacht. (R. Straub)

55 Trift (Gadmen)

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 22.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

57 Oberer Grindelwald

2010: Kein Zugang möglich, nur Fotodokumentation von den gleichen Standorten aus wie in früheren Jahren auf dem Felsen der 'Gletscher-Bar'. (VAW/ETHZ – A. Bauder)

2011: Kein Zugang möglich, nur Fotodokumentation von den gleichen Standorten aus wie in früheren Jahren auf dem Felsen der 'Gletscher-Bar'. (VAW/ETHZ – A. Bauder)

57 Unterer Grindelwald

2010: Luftbildaufnahmen am 21.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. Zungenende ist stark schuttbedeckt (Ablagerung Felssturz Schlossplatte) und die Position der Front bleibt stationär. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 28.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. Weiterhin keine Veränderung der Position vom schuttbedeckten Zungenende bestimmbar. Dahinter dünnt sich der Gletscher zunehmend aus. (VAW/ETHZ – A. Bauder)

59 Eiger

2010: Am 6.10.2010 war wunderschönes Wetter mit blauem Himmel, es herrschten kühle Temperaturen. Durch Schneefall wenige Tage vor der Messung erschien der Gletscher viel "sauberer" als 2009. An den Seiten ist der Gletscher im Jahr 2010 vorgestossen. Dies ist auch durch den Vergleich der Bilder 2009/10 ersichtlich. Der grösste Rückzug ereignete sich bei den Punkten 10 - 15. In Zukunft werden noch weitere alte Messpunkte aufgesucht und digital festgehalten. (R. Zumstein)

2011: Rückgang im zentralen Bereich stark. Sehr warmer Frühling und Herbst. Sehr gute Messbedingungen. Die Suche nach alten Messpunkten war erfolgreich. Gelegentlich können wir den Rückgang 1938 - 1962 angeben (erste Schätzung nach Orthophoto ca. 230 Meter). Wir haben die Punkte A und B der alten Messlinie um 1930 gefunden und können die Basislinie von damals rekonstruieren. (R. Zumstein)

60 Tschingel

2010: Am 14.09.2010 gab es eine leichte Nebeldecke, leichter Wind, ansonsten war es schön und es herrschten angenehme Temperaturen. Auf der Rückseite verzeichnet sich ein gleichmässiger Rückzug von 3-4 Metern. Abbau der Gletscherzunge seitlich durch Abstrahlung von Felsen und Moränen. Rückgang bis 40 m. Das Messkonzept muss überprüft werden, weil die Messungen am linken Rand zunehmend tangential erfolgen und die Aussagekraft der Werte in Frage gestellt wird. Am Ende der Gletscherzunge bildet sich ein See. (R. Zumstein)

62 Schwarz

2011: Gletschertor eingebrochen. Warmes Wetter mit Föhn: Wegen hoher Wassermenge im Gletscherbach musste die Messung abgebrochen werden (nur viel weiter unten zu queren). (C. Coleman Bratschen)

64 Blümlisalp

2010: Zunehmend schwierigere Messverhältnisse. Seitliche Hängegletscher als Gefahr. Das Wetter am 21.09.2010 war schön und sehr warm. (U. Fuhrer)

2011: Sehr schwierige Messbedingungen – Einsturzgefahr! Der vermessene Gletscher ist mit dem seitlich einlaufenden Gletscher nicht mehr verbunden. (U. Fuhrer)

66 Tiefen

2010: Im südlichen Zungenbereich ist der Gletscher praktisch stationär. Bei den Messpunkten 9 und 10 ist der Rückgang hingegen ausgeprägt. In der Zungenmitte ist eine Felsstufe zum Vorschein gekommen. Der auf dieser Stufe neu eingerichtete Messpunkt 11 ersetzt den Messpunkt 04, welche vom Bach teilweise unterkolkt wurde. (J. Marx)

2011: Im nördlichen Zungenbereich ist der Rückgang sehr ausgeprägt. Beim Messpunkt 08 bricht die unter Schutt liegende Eisdecke immer mehr in sich zusammen. Es hat sich ein grosses Tor gebildet. Der Wasserabfluss konzentriert sich jedoch beim Messpunkt 11. Als Folge des markanten Schwundes im Einzugsgebiet wird der östlichste Gletscherbereich nicht mehr genährt und fällt zunehmend in sich zusammen. (J. Marx)

67 St. Anna

2010: Auf einem grossen Block wurde ein neuer Messpunkt (2010) eingerichtet. Dieser ersetzt den Messpunkt 2004. Die Längenänderung entspricht derjenigen der Vorjahre. Der Massenverlust ist sehr ausgeprägt. (J. Marx)

2011: Der Rückgang liegt in der Grössenordnung der letzten Jahre. Gegen St. Annalücke und St. Annahorn ist das östlichste Einzugsgebiet praktisch ausgeapert. (J. Marx)

68 Chelen

2010: Der Rückgang ist auf der ganzen Breite ausgeprägt. Der von Schutt bedeckte vorderste Zungenbereich fällt zunehmend ein. (J. Marx)

2011: Der Rückgang ist auf der ganzen Breite markant. Mit der Einrichtung neuer Messpunkte (2010 C, D, E, F) konnten alle Messdistanzen wesentlich verkürzt werden. Die Messlinie 2004 B zielt am Gletscher vorbei. Der Zungenbereich ist stark mit Schutt überlagert. (J. Marx)

69 Rotfirn

2010: Viel augenscheinlicher als der Längenverlust ist der Massenverlust. Dieser ist sogar im Einzugsgebiet von Jahr zu Jahr besser zu beobachten. (J. Marx)

2011: Auch hier schrumpft das Nährgebiet sehr stark. Dank einer dicken Schuttauflage wird der Zungenbereich momentan noch konserviert. Die Nahrung von oben bleibt jedoch fast gänzlich aus. (J. Marx)

70 Damma

2010: Es wurde ein neuer Versuch unternommen, in den Zungenbereich zu gelangen. Der Zugang über die Nordflanke via Gemischstöckli (Pkt. 2373) ist bezüglich Steinschlag sicherer als der 2006 gewählte "Weg". Die Zunge selbst konnte nicht erreicht werden. Nordwestlich des tiefsten Gletscherpunktes wurde ein Messpunkt (2010) eingerichtet. Dieser liegt praktisch auf der alten Visierlinie. (J. Marx)

2011: Zum im Vorjahr eingerichteten Messpunkt 2010 konnten drei weitere Punkte eingerichtet werden (2011 A, B, C). Durch die Lage in einer ehemaligen Zugzone (Absturz) ist die Eisdecke hier verhältnismässig dünn, was zu einem ausgeprägten Rückgang führt. Der Zugang über das Gemschistöckli wurde mit Farbe markiert. (J. Marx)

71 Wallenbur

2010: Der Gletscher hat immer noch 2 Tore. Der zwischen den Toren liegende Bereich fällt seit einigen Jahren stark zusammen. Der Zungenbereich ist von Schutt konserviert. Da er von oben kaum mehr genährt wird, hungert er zunehmend aus. Das östliche Tor ist ca. 11 m breit. Dieser Gletscherbach führt mehr Wasser als jener beim westlichen Tor, welches ca. 20 m breit und 8 m hoch ist. Ein Bach (kleiner) tritt kurz ausserhalb vom Tor von Ost aus dem Gletscher aus. Das Tor und der anschliessend grosse Tunnel sind mehr oder weniger trocken. (J. Marx)

2011: Trotz mächtiger Schuttauflage im Zungenbereich liegt der Rückgang deutlich über dem Durchschnitt der letzten Jahre. 2 Gletschertore: Das Östliche ist nur flach ausgebildet, das Westliche ist viel höher (mindestens 10 m). Der Bach tritt hier von Ost eigentlich ausserhalb vom Tor aus dem Gletscher. Gletscherzunge ist stark gelappt und vor allem im Osten sehr stark überdeckt. (J. Marx)

73 Hüfi

2010: Die Zunge ist ab Messpunkt 2002 immer noch knapp sichtbar. Die elektronisch gemessene Distanz hat sich nicht verändert. Der Gletscher hat sich auf ein Felsplateau zurückgezogen und kann nicht aussagekräftig gemessen werden. Die kleine Gletscherzun-

ge hat sich gegenüber 2009 nicht zurückgezogen, hat jedoch in der Höhe abgenommen. (J. Marx)

2011: Der Hüfifirn wurde besucht, konnte jedoch nicht gemessen werden. Zur Zeit ist die Gletscherzunge zu Fuss nicht erreichbar. Auch die in den letzten Jahren ausgeführte elektronische Distanzmessung ist nicht mehr möglich. Wir planen das Gebiet anlässlisch der nächsten Messung des Brunnifirns aus der Luft zu erkunden. Der Gletscher hat sich auf ein Felsplateau zurückgezogen. Die bis anhin gemessene kleine Gletscherzunge ist vom Pt 2002 aus nicht mehr sicht- resp. messbar. (J. Marx)

74 Griess

2010: Die Situation im Zungenbereich zeigt sich weitgehend unverändert. Dies ist auf eine starke Überdeckung mit Schutt zurückzuführen. (J. Marx)

2011: Der Zungenbereich ist stark mit Schutt bedeckt, entsprechend ändert sich hier wenig. Der Rückgang im Nährgebiet ist jedoch augenfällig. Punkt 2007/3 wegen Schuttüberdeckung nicht messbar. (J. Marx)

75 Firnalpeli

2010: Gletscher am 23.9.2010 vermessen. An der Gletscherzunge waren teilweise grossflächige Teilabbrüche zu verzeichnen. Bei der Messung wurden die vom Gletscher losgelösten Eisabbrüche nicht berücksichtigt. Deshalb weisen die Messungen im Jahr 2010 teilweise einen erheblich grösseren Rückgang des Gletschers im Vergleich zu den letzten Jahren aus. Die Gletscherhöhle (bei Punkt 3) hat sich ebenfalls massiv vergrössert. Die GPS-Aufnahmen funktionierten auch dieses Jahr nicht. (U. Walser)

2011: Vermessung am 2.10.2011: Auf der Westseite, wo sich der Gletscherbach gebildet hat, ist der Gletscher stark zurück gegangen. Die Gletscherhöhle ist eingefallen und auf der Westseite haben sich grosse Hohlräume ausgebildet. Das Eis ist in diesem Bereich teilweise sehr dünn. (U. Walser)

76 Griessen

2010: Gletscher am 14.10.2010 vermessen. Der Gletscher war schneebedeckt. (U. Walser)

2011: Gletscher am 3.10.2011 vermessen. Im Jahr 2010 wurde die Messung durchgeführt, als der Gletscher bereits schneebedeckt war. Wie rückwirkend festgestellt werden konnte, führte dies beim Punkt 1 wahrscheinlich zu einer Überschätzung der Länge des Gletschers im Jahr 2010. Die Abgrenzung war auch im Jahr 2011 nicht immer ganz einfach, da die Gletscherzunge im Endbereich teilweise mit Schutt überdeckt war. In den letzten Jahren hat sich beim Gletscher ein Gletschersee ausgebildet. Im nord-östlichen Bereich reicht die Ausaperung praktisch bis ins Akkumulationsgebiet. Diese Ausaperung wurde mit den GPS-Messungen erfasst. (U. Walser)

77 Biferten

2010: Das Jahr 2010 ist für die Messung am Biferten eine spezielle Sache, denn dieses Mal kann ich mit 2 Gehilfen die ganze Vermessung vornehmen. Dies aus dem Grunde, weil Manuel Grossmann aus Luchsingen, als Maturand der Kantonsschule Glarus, seine Matura-Arbeit, eben dem Bifertengletscher widmet und einmal eine Messung vor Ort mitverfolgen möchte.

Mit Roman Müller begleitet mich diesmal ein ehemaliger Forstwart und begeisterter Bergler zur Messung, dies eben auch aus "Gwunder", wie dies denn so abläuft, aber auch aus Interesse an der Materie Eis. Beinahe 2 Monate früher als im Vorjahr starten wir am 11. September unser Unternehmen, mit den üblichen Vorarbeiten im Tal: Schlüssel abholen, Fahrt nach Hintersand, dabei mit Fotohalt bei der Sandrisi um unseren höchsten Glarner den Tödi einmal mehr bildlich zu begrüssen. Ab Hintersand steigen wir schliesslich zu Fuss in gut einer Stunde mit unserem Vermessungsmaterial hinauf zur Unterkunftshütte der KLL. Dabei wird ebenfalls fleissig "geknipst" um auch das "Vorgelände" und die Umgebung des Bifertengletschers zu dokumentieren. Ein wirklicher Prachtstag mit milden Temperaturen ist beste Reklame für die Gletschermessung. Lediglich im Schatten ist es für kurze Zeit kalt und so wie es eben auch sein kann. Nach Fassung des Stativs und Verschiebung über die Felsbänder hinauf zu Punkt 2003 beginnt die eigentliche Kartierung der Gletscherzunge 2010. Schnell ist das Gletschertor am Gletscherbach 1 erfasst und dokumentiert, danach beginnt einmal mehr die Suche nach dem Eis, das durch Geröll und Felsbrocken immer noch stark zugedeckt ist. Gemeinsam finden die zwei Gehilfen aber schliesslich die Zunge und steigen so mit Reflektor und Rucksack hinauf Richtung Punkt 20031. Auf der Höhe des Gletschersees ist ein Wechsel der Station nötig, da ich ab dort keine Einsicht mehr habe wie die Zunge verläuft. Somit haben die zwei Helfer eine erste Rast verdient, während ich den schäumenden Gletscherbach 1 über seinen Rücken umgehe und über den Gletschersee hinauf zu Punkt 20031 steige. Ein kurzes Fachgespräch beim Gletschersee. Erklären des weiteren Vorgehens etc. gehören natürlich dazu. Der Punkt 20031 ist nun definitiv ungünstig für die Fortsetzung der Messung, daher bestimme ich, wie bereits im 2009 angetönt, eine neue Station die wiederum für einige Jahre den günstigeren Blick zum Gletscher gewährt. So entsteht die Station 20101 die ca. 90 m in südlicher Richtung von der Station 20031 entfernt liegt. Von dort habe ich beste Einsicht zum zweiten Teil des Bifertengletscher und insbesondere zum Gletscherbach 2 der in diesem Jahr eine ganz besondere Form präsentiert: als ob ein riesiger Stein vom Himmel gefallen wäre ist das Gletschertor als Kreis im Gletscher hinausgebrochen. Manuel der Maturant ist begeistert vom Anblick seiner Maturamaterie. Interessiert dokumentiert er Sämtliches, was er vielleicht irgendwo in seine Arbeit einbauen kann. Der Gehilfe Roman Müller erledigt die Arbeit, wie wenn er wohl nie etwas anderes getan hätte mit rund 30 Punkten lässt sich die Gletscherzunge wunderbar dokumentieren und so kann ich eine weitere Messung mit Erfolg abschliessen. Die Auswertung bringt einmal mehr einen beträchtlichen Schwund ans Tageslicht: -10.6 m hat sich der Gletscher zurückgezogen. Der tiefste Punkt ist ebenfalls wiederum einen halben Meter höher anzutreffen, nämlich auf 1969.2 m.ü.M. Das Gletschertor am Gletscherbach 1 liegt etwas höher auf 1970.7 m.ü.M. Ab eben diesem Tor bis zur Fassung 2 der KLL beträgt der Abstand nun bereits 173.7 m also nahe an der 200m Grenze. Die ganze Breite die wir bei der Begehung 2010 vermessen haben beträgt 553.2 m. Ab dem Gletschertor 2 hat sich der Gletscher etwas ausgeweitet und hat daher in diesem Gebiet den Eindruck eines kleinen Vorstosses hinterlassen, doch der Schein trügt, ist das Eis in diesem Bereich doch in der Mächtigkeit um vieles in sich zusammengefallen. Das Gletschertor mit dem Gletscherbach 2 hat sich zum Vorjahr um ca. 4 m verändert und liegt neu auf 2010.8 m.ü.M. Der Ausstieg wie gewohnt über die Moräne hinauf zur Fridolinshütte ist ebenfalls ohne Zwischenfall gelungen, so dass wir bald in der Fridolinshütte bei Wähe und Flüssigem die Messung nochmals Revue passieren lassen. Das Fachsimpeln mit der Hüttenwartin Gabi Aschwanden gehört ebenfalls dazu und lässt einem dies und das erfahren. Manuel der Maturand hat wohl einiges an Material sammeln können, das er in seine Arbeit einfliessen lässt. Gespannt warte ich auf seine Arbeit, die ich schliesslich gerne auch der VAW zustellen werde. Er bleibt die Nacht in der Fridolinshütte, so steigen Roman Müller und meine Wenigkeit über den Ochsenstock und die Röti nach Obersand und schliesslich nach Hintersand zum Bus ab. Natürlich nicht ohne auch noch ab dem Ochsenstock ein Bild zur Übersicht des Gletschers zu schiessen. Eine immer wieder interessante Perspektive zur Dokumentation. Ein rundum zufriedener Gletschermesser kann eine weitere Messung unfallfrei und mit tollen Eindrücken abschliessen. Der Winter kann kommen und den geschwächten Gletscherriesen zudecken, damit er sich endlich wieder einmal etwas erholen kann. (H. Klauser)

78 Limmern

2011: Punkt 1 - 4: stark schuttbedeckt; Gletscherzunge aper, etwas Neuschnee in höheren Lagen, kaum Firnschnee (U. Steinegger)

79 Sulz

2010: Mittlerer Rückgang von -1.50 m. (M. Schaller)

2011: Es haben sich gravierende Differenzen zur GPS-Messung 2010 ergeben. In der Höhe 5 - 16 m und in der Lage 5 - 7 m. Habe in der Situation 1:500 die gemessenen Punkte 2011 um 5.5 m in Südrichtung verschoben um einen relativen Vergleich zu den Punkten von 2010 zu erhalten. Schätze die Messung 2011 genauer ein. Jeder Punkt wurde länger gemessen (zwischen 4 - 7 Epochen). Im 2010 wurde mit max. 2 Epochen gemessen. Fazit: 2013 sollte man mind. 10 Epochen lang messen... (M. Schaller)

80 Glärnisch

2010: Gut 14 Tage früher als die Messung im 2009 nämlich am 12. September 2010 nimmt mein Gehilfe, diesmal ist es wieder einmal Maurus Pfister (ein Bergsteigerkamerad meines Sohnes) und ich den Weg zum Glärnischgletscher in Angriff. Dabei bewundern wir, wie bereits seit mehreren Jahren, die herrliche Flora. Herrlich milde Temperaturen bringen uns bereits mächtig ins Schwitzen, doch wie gewohnt erreichen wir in ca. 1.5 Stunden Marschzeit unseren Arbeitsort. Maurus lasse ich bei der Station 12 bereits stehen, während ich noch weiter ansteige um schliesslich bei der Station 13 das Instrument zu installieren. Nach der Orientierung des Instrumentes zur Station 12 kann auch Maurus nachziehen und schliesslich mit der eigentlichen Kartierung des Gletschers beginnen. Dabei zieht er vom nördlichen Ende zum Südende und erfasst alle grösseren Knicke und Ecken der Gletscherzunge entlang, die ich wiederum mit dem Instrument in Lage und Höhe registriere. Probleme tauchen dabei keine auf. Alles läuft wie am Schnürchen. Lediglich die Aufnahme der Gletscherzunge im Bereich des markanten Felsenriffes in Richtung Süden, veranlasst mich zum Entschluss, eine neue Station zu bestimmen, die mir einen besseren Überblick über die Gletscherzunge gewährt. Maurus mit Spitz und Fäustel ausgerüstet, schlägt ein Loch und markiert dieses mit Farbe. Somit ist die neue Station 14 für die kommenden Messungen bereit, nachdem ich auch diese in Lage und Höhe bestimmt habe. Das Verdikt der Messung ist weiterhin ein Schwund; diesmal beträgt dieser im Schnitt doch wiederum beachtliche -8.6 m. Der tiefste Punkt bewegt sich dabei nicht allzu stark, der ist nur gerade 0.2 m höher als das letzte Mal. Der Gletscherbach tritt auf einer Höhe von 2345.4 m.ü.M. aus dem Gletscher. Dieser ist wiederum im Plan markiert. Er schlängelt sich dem Fels entlang unter der Station 13 zu Tale und bringt doch beachtliche Mengen an Wasser. Der Glärnischgletscher flacht immer mehr ab, dies ist wohl auch ein Zeichen seiner schwindenden Eisflächen. Eine erfolgreiche Messung ist immer erst dann zu Ende, wenn alle wieder heil im Tale ankommen, dies war auch diesmal wiederum so. Nach einer ausgiebigen Rast in der Glärnischhütte bei Kuchen und Kaffee kommen wir ohne Zwischenfälle bei unserem Bus in Wärben an, mit dem wir schliesslich wieder zurück in die Zivilisation fahren und eine weitere erfolgreiche Messung beenden. (H. Klauser)

2011: Noch im selben Monat wie im Jahr davor, aber 2 Wochen später am 24.09.2011 (Schwander Chilbi Samstag) treten Josef Wildhaber und meine Wenigkeit, zur Messung am Glärnischfirn an. Josef oder eben Sepp ist auch an meinem Arbeitsort als Gehilfe tätig und so konnte ich ihn für diese Arbeit ebenfalls begeistern. So steigen wir, gespannt, was denn der Gletscher wieder für uns bereit hält, die gut 1000 Höhenmeter hinauf zum Firn. Der Zwischenhalt bei der Glärnischhütte gehört selbstverständlich zum alljährlichen Ritual, einerseits zur Stärkung andererseits zum Gedankenaustausch mit dem Hüttenwartsteam und bereits ersten Infos zum Gletscher. Bereits vorher leuchteten uns wiederum die herrlichen Edelweisse entgegen, wirkliche eine Pracht der Natur. Nachdem ich ja im letzten Jahr mit der Station 14 einen neuen Ausgangspunkt geschaffen habe ist für mich auch der Anstieg etwas anders. Ich ziehe bereits tief unter dem Gletscher über die herrlichen Gletscherschliffe hinweg Richtung Südende des Firns. Bis zum Fusse der markanten Felsrippe, dann am einfachsten Ort hinauf auf diese Felsrippe und der entlang bis zur Station 14. Dort installiere ich mich mit dem Instrument, erstmalig mit dem Theodoliten TC605L von Leica, denn für das "alte Instrument" waren leider keine Batterien mehr aufzutreiben und so wird dieses Instrument bald zum "Antiguarium". Sepp steigt während dieser Zeit zum Nordende des Gletschers und hält bei den beiden Stationen 12 und 13 noch kurz inne um mir die "Orientierungen" zu übermitteln. Danach beginnt die Messung am Nordende, nicht ganz ohne eine Schrecksekunde: Sepp gleitet beim Übergang vom Fels und Geröll auf den Gletscher aus (da alles mit einer feinen Schneeschicht überdeckt ist) und schlägt unsanft auf dem Po auf. Die Auswirkungen dieses Sturzes sind schliesslich noch Tage, ja Wochen nach der Messung sichtbar (kräftiger blauer Fleck, als Bluterguss). Zum Glück kann er aber weiter der Erfassung des Gletschers nachgehen und so erfassen wir wiederum Punkt um Punkt. Mit ca. 40 Punkten in Lage und Höhe können wir so die Gletscherzunge dokumentieren und den Stand 2011 festhalten. Der tiefste Punkt am Gletscher schwankt in den letzten Jahren beinahe auf demselben Niveau hin und her. So erreicht er im 2011 wieder den Stand von 2009; nämlich die Höhe von 2344.6 m.ü.M. Dies ist sicherlich auch auf das flache Vorgelände des Gletschers zurückzuführen. Im Moment können da keine all zu grossen Schwankungen in der Höhe des tiefsten Punktes entstehen. Beim tiefsten Punkt tritt auch der Gletscherbach hervor und schlängelt sich ins Tal. Die Messung können wir bei spiegelblankem und stahlblauem Himmel durchführen. Die Temperaturen sind wie immer für den Gletscher zu mild, jedoch für die Messung wunderbar. Die Station 14 bewährt sich und so kann ich nun auch das südliche Ende des Gletschers genauestens erfassen. Die Flächendifferenzen bei der Auswertung im Büro von 3257.4 m² durch die gemessene Breite ergibt aber immer noch einen Schwund von -7.7 m im Durchschnitt, was für diesen Gletscher sicherlich immer noch beträchtlich ist und ihn dementsprechend schwächt. Nach getaner Arbeit am Gletscher gehört auch eine Rast, bei der immer auch noch diverse Bilder des Gletschers entstehen, so dass auch da eine tolle Publikation für die Nachwelt geschaffen werden kann. Der Abstieg zur Glärnischhütte und der Z'Vesperhalt mit Wähe und einem Durstlöscher verlaufen ebenfalls ohne Zwischenfälle, wie auch der Abstieg zum Bus in Wärben birgt für uns keine weiteren Schwierigkeiten mehr. So kann ich eine weitere Messkampagne erfolgreich abschliessen. Mit Gedanken, wie sich denn die Gletscher in Zukunft entwickeln, ob sie immer noch so rasant zurück schmelzen oder ob da einmal etwas Einhalt geboten wird, sehe ich gespannt der Messung im 2012 entgegen. (H. Klauser)

81 Pizol

2010: Die Gletscherkontrolle erfolgte am 22. September. Die Witterungsbedingungen waren sehr gut. Die Längenmessungen erfolgten ab der C-Linie, in den Punkten C2 bis C5, alle im Beobachtungsazimut 244 Neugrad. In den Linien 2, 3 und 4 ist der Gletscherrand einfach bestimmbar. Die starke Überführung in der Linie 5 macht es schwierig, den "richtigen" Rand zu finden. Aus dem Durchschnitt der Messungen ergibt sich eine Längenänderung von -2.9 m. Bezüglich der Schwierigkeiten mit der Bestimmung des Gletscherrandes in der Linie 5 ist wohl eher von einer, zwischen 2009 und 2010 konstanten Länge auszugehen. 2011 soll versucht werden, eine neue Messlinie einzurichten. Da das Gletschervorfeld vor allem mit Geröll belegt ist und kaum anstehender Fels sichtbar ist, wird dies nicht ganz einfach sein, echte "Fixpunkte" zu finden. (Th. Brandes)

2011: Die Gletscherkontrolle erfolgte am 26. September. Die Witterungsbedingungen waren sehr gut. Das Gletschervorfeld wies noch einige Schneefelder auf. Dies behinderte die Messungen aber nicht wesentlich, allenfalls in Linie 5, wo es immer schwieriger ist, den Eisrand richtig zu erkennen. Die ausgewerteten Messungen für 2011 erfolgten ab der C-Linie, in den Punkten C2 bis C5, alle im Beobachtungsazimut 244 Neugrad. In den Linien 2, 3 und 4 ist der Gletscherrand einfach bestimmbar. Die starke Überführung in der Linie 5 erschwert die Festlegung des "richtigen" Randes. Aus dem Durchschnitt der Messungen ergibt sich eine deutliche Verkürzung in der Länge von -29.1 m. Immer deutlicher tritt die schon von Noldi Hartmann vermerkte "Teilung" des Gletscherfeldes hervor. Zwischen dem steileren oberen Teil und dem etwas flacheren unteren Teil sind eindeutig Felsen sichtbar. Ob es sich um anstehenden Fels handelt haben wir nicht geprüft, ich gehe aber davon aus. Kontrolle im nächsten Jahr. Für die kommenden Jahre wurde eine neue Messlinie eingerichtet (D-Linie). (Th. Brandes)

82 Lavaz

2010: Gletschermessung am 23.8.2010 bei frischer, aber schöner Witterung. (R. Lutz)

2011: Die Messung fand am 13.9.2011 bei frischer, aber schöner Witterung statt. Vom im 2008 eingerichteten Fixpunkt aus, wurde nun die dritte Gletschermessung durchgeführt. Hierdurch ist ein erster aussagekräftiger Vergleich möglich: aus dem Plan herausgelesen sind die Grenzlinien 2010 - 2011 am Nordrand der Gletscherzunge zwischen 2 - 46 m und am Ostrand der Gletscherzunge zwischen 2 - 36 m voneinander entfernt. (R. Lutz)

83 Punteglias

2010: Das Wetter bei der Messung am 12.10.2010 war schön und wolkenlos bei 5°C. Im Messbereich war kein Schnee vorhanden, der Gletschersee zeigte nur vereinzelt eine ganz dünne Eisschicht. Aus dem Gletscher tritt an verschiedenen Stellen Wasser aus. Der Schmelzprozess hat sich während der Messung deutlich verstärkt. Wo der von Schutt beladene Gletscherkörper zu Tage tritt, herrschte leichter Steinschlag durch abrutschende Steine und Feinmaterial. Die Ferrera führte am Morgen mässig Wasser - der Abfluss steigt bei schönem und warmen Wetter im Verlauf des Tages an. Der See verlandet immer stärker. Die Deltas werden grösser. Der Gletscher besteht immer noch aus 3 Gletscherkörpern, die alle in Richtung SO fliessen. Der Mächtigste ist ganz im Osten und ist von braunem Schutt bedeckt. Am Gletscher Ostrand, im Grenzbereich Gletscher-Geröllhalde hat sich ein Gletschertor geöffnet. Der Eingang zum Gletschertor wurde durch einen recht frischen Gletscherabbruch versperrt. Die Eisgrotte ist rund 80 m lang und 15 m breit. Auch der westliche Teil schmilzt zusehends.
Die einst klare Gletschergrenze beginnt sich zu verästeln, überall finden sich Abbrüche und neue Einschnitte - die Zunge wird unregelmässig. Zum Teil ist es sehr schwierig, die Gletschergrenze abzuschätzen, da überall sehr viel Schutt den Gletscher bedeckt. Der mittlere Gletscherkörper ist recht mächtig, ist aber stärker am Schmelzen als die östliche Zunge. Die Abtrennung zwischen dieser mittleren Gletscherzunge und der Östlichen tritt durch ein grösser werdendes "Tälchen" immer stärker zu Tage. Einige Gletschereinbrüche bilden kleine Krater. Die Gletschergrenze im westlichen Teil dieser mittleren Zunge ist eindrücklich. Es ist eine rund 10 - 15 m hohe Eiswand. Im Tagesverlauf und bei Sonneneinstrahlung fängt diese Wand zu leben an - es kracht und ächzt und Wasser und Steine fallen herunter. Der westliche Teil verzahnt sich immer stärker. Es entstehen mehr Einschnitte mit zum Teil eindrücklichen Gletschereinbrüchen - wahrscheinlich dort, wo früher das Gletschertor "West" stand. Dieses ist eingestürzt und grösstenteils geschmolzen. Der Gletscher hat sich seit 2008 um 12.5 m zurückgezogen. Der Gletscherschwund fand vorwiegend am mittleren und westlichen Gletscherkörper statt. (Chr. Buchli)

2011: Die Messung fand am 24.8.2011 bei schöner und warmer, teilweise bewölkter und böiger Witterung statt. Im Messbereich befand sich kein Schnee und der Gletschersee war offen. Aus dem Gletscher tritt an verschiedenen Stellen viel Wasser aus. An den Gletscherrändern herrscht reger Steinschlag, zum Teil sehr gefährlich, Vorsicht ist geboten. Die Ferrera führt viel und braunes Wasser. Die Seeverlandung schreitet voran. Der Gletscher besteht immer noch aus 3 Gletscherkörpern, die alle in Richtung SO fliessen. Der immer noch Mächtigste ist mit dem "oberen" Gletscher, oberhalb der Felswand noch verbunden. Die Trennung vom östlichen Gletscherkörper zum mittleren Teil schreitet voran - es bildet sich ein Tälchen zwischen den beiden Gletscherzungen. In diesem Bereich lebt der Gletscher stark, es ist eine dynamische Zeit, viel ist in Bewegung. Steine rutschen aus den Gletscherrändern ins neu entstandene Tälchen, zum Teil sind kleine Murgänge zu beobachten, welche dann den entstandenen Abflussbach stauen. Dieser sucht sich dann einen anderen Weg und so entstehen Löcher im Gletscherbereich. Der Bach fliesst unterirdisch wieder weiter und tritt weiter unten wieder zu Tage. Durch Gletschereinbrüche entstehen kleine Krater, Sackungen. In diesem mittleren Bereich, ist es wie im letzten Jahr sehr schwierig, die Gletschergrenze abzuschätzen. Am Westrand ist der Gletscher ruhiger, er schmilzt eher gemächlich vor sich hin. In einem Bereich entstand unter dem Geröll eine Art Wasserlinse, betritt man diese Fläche (von aussen nicht sichtbar, sieht aus wie überall) so sinkt man rasch und relativ tief ein und kommt nur schwer wieder raus. Das Jalon ist mit Leichtigkeit bis 50 cm in den Boden zu stossen. Auch hier ist also Vorsicht geboten. Das grosse Gletschertor und die Eisgrotte am Ostrand sind eingestürzt und verschwinden. Es stellt sich die Frage, wie lange der Gletscher in diesem flachen Teilstück noch mit dem oberen Gletscher verbunden ist. In der Steilstufe (Felswand) weiter hinten scheint das Eis schnell zu schmelzen und abzubrechen. In diesem Jahr ist der obere mit dem mittleren Gletscher noch verbunden. Falls diese Verbindung wegschmelzen sollte, so entsteht in unserem Messbereich Toteis. Wie die Gletschermessung dann vonstatten geht, ist abzuklären. Der Gletscher hat sich seit 2010 um 27.75 m zurückgezogen. Der Gletscherschwund fand vorwiegend am mittleren Gletscherkörper statt. Was erstaunt, ist die Tatsache, dass sich der Gletscher im westlichen Teil, im Vergleich zum letzten Jahr etwas ausgebreitet hat. Ob dies durch Gletschereinstürze oder leichtes Abrutschen aus dem Osthang zustande kommt, ist nicht klar. Am Ostrand ist eine Offnung entstanden, dies kann durch eine Abrutschung hervorgerufen worden sein. (Chr. Buchli)

84 Länta

2011: Der rechte Gletscherteil ist stark mit Schutt bedeckt. Der Rückzug geht langsamer vor sich. Am Verbindungsband in der Steilstufe scheint der Gletscher auseinander zu brechen. Ein massiver Rückgang zeichnet sich jetzt konkret ab. Die Problematik von 2007 besteht jedoch weiterhin. (B. Riedi)

85 Vorab

2010: Das Wetter am 17.09.2010: Nebel und Regen. Die Gletscherzunge ist zum Teil schneebedeckt. (J. Brunold)

2011: Das Wetter am 29.09.2011: schön und warm. Gletscherzunge wurde detailliert mit GPS aufgenommen. (J. Brunold)

86 Paradies

2010: Die Veränderung zwischen 2009 und 2010 wurde graphisch durch 12 Messungen im Abstand von 10 m ermittelt und beträgt +0.4 m. Der Schnee vom letzten und vorletzten Winter ist sehr wahrscheinlich nicht ganz geschmolzen und ist am Rand des Gletschers noch teilweise vorhanden. Da die Gletscherzunge sehr dünn und flach ist, ist es kaum möglich, eine genaue Trennung von Eis und altem Schnee zu bestimmen. Das Wasser tritt an der Gletscherzunge verstreut aus. Das Nebentor von 2008 führt am meisten gesammeltes Wasser und wird somit weiterhin als Haupttor bezeichnet. (C. Fisler)

2011: Die Veränderung zwischen 2010 und 2011 wurde graphisch durch 8 Messungen im Abstand von 10 m ermittelt und beträgt -18.6 m. Der grosse Rückzug gegenüber 2010 ergibt sich durch das Verschwinden des im SO gelegenen Teils der Gletscherzunge. In diesem Bereich beträgt der Rückgang ca. 53 m. Der starke Rückgang des Südostteils relativiert sich, wenn die Fotos aus den Jahren 2007 bis 2011 verglichen werden. Daraus geht hervor, dass 2008 - 2010 der Schnee nicht komplett geschmolzen ist und somit der tatsächliche Zungenverlauf nicht zu erkennen war. Im westlichen Teil des Gletschers ist der Wasserfall, der bis letztes Jahr noch von Eis überdeckt war, frei geworden. Der heutige Gletscherrand verläuft bei der früheren halbmondförmigen Gletscherspalte. Ebenfalls hat sich die Mächtigkeit des Gletschers stark verringert. Ab HP3 ist neu der Gipfel der Lògia zu sehen. Das Wasser tritt an der Gletscherzunge verstreut aus. Die geführte Wassermenge 2011 im Vergleich zu den Vorjahren, ist trotz geringer Niederschläge, in den vorausgegangenen Wochen besonders hoch. Die Temperaturen sind für dieses Jahreszeit sehr hoch. (C. Fisler)

87 Suretta

2010: Der Gletscher ist zwischen 2009 und 2010 praktisch gleich geblieben. Die geringe Zunahme von 0.7 m ist auf die genauere Messmethode vom 2010 gegenüber 2009 zurückzuführen. Die Zunahme wurde graphisch anhand von 29 Messungen im Abstand von 10 m ermittelt. Im Feld ist ein Punkt mit dem Gletscherzustand von 2006 gefunden worden. Der Abstand zur heutigen Gletscherzunge beträgt 2 - 3 m. Dies entspricht grössenmässig dem graphisch ermittelten Rückzug der letzten Jahre. Anhand eines Vergleichs mit Fotos aus dem Punkt G10 kann man sagen, dass dieses Resultat durchaus plausibel ist. Um die Gletscherzunge zu erreichen, muss man teilweise über Fels klettern. Die Erreichbarkeit ist nur mit guten Bedingungen gewährleistet. (C. Fisler)

2011: Der Gletscher ist zwischen 2010 und 2011 im Mittel um 2 m zurück gegangen. Die Abnahme wurde graphisch anhand von 30 Messungen im Abstand von 10 m ermittelt. Der geringe Rückgang wird auch durch die Markierung vom letzten Jahr bestätigt. Auffällig sind die, im Vergleich zum Vorjahr, deutlich grösseren Spalten und das vermehrte Abbrechen von grossen Eisblöcken. Eine erhebliche Zunahme an Felsabbrüchen und die daraus resultierende Menge an Geröll auf dem Gletschervorfeld (vorherige Gletscherzunge) ist festgestellt worden. Im Fotovergleich von Punkt G10 ist zu erkennen, dass die Mächtigkeit des Gletschers erheblich abgenommen hat. Durch die erheblich höhere Wassermenge (trotz geringen Niederschlägen im September, aber gleichzeitig erhöhten Temperaturen), konnte ein Bachverlauf auf der Karte festgelegt werden. Der 2010 entdeckte See am Nebengletscher ist nicht grösser geworden. Um die Gletscherzunge zu erreichen, muss man teilweise über Fels klettern. Die Erreichbarkeit ist nur mit guten Bedingungen gewährleistet. (C. Fisler)

88 Porchabella

2010: Die Messung erfolgte nach dem ersten Schneefall, aber bei guten Verhältnissen. Die Ermittlung der Längenänderung erfolgte graphisch an 64 Messpunkten. Die mittlere Längenänderung beträgt -15.6 m. Die Höhe der Schneelinie lag den ganzen Sommer auf ca. 3100 m.ü.M. Die Flächen mit erodierbarem Material haben wieder zugenommen. Diese Entwicklung kann zu Murgängen führen. (Chr. Barandun)

2011: Die Messung erfolgte nach dem ersten Schneefall, aber bei guten Verhältnissen. Die Ermittlung der Längenänderung erfolgte graphisch an 81 Messpunkten. Die mittlere Längenänderung beträgt -18.7 m. Die Höhe der Schneelinie lag den ganzen Sommer auf ca. 3100 m.ü.M. Zusätzlich zur Längenänderung, musste neu auch auf der Westseite eine markante Breitenabnahme registriert werden. Um die Breitenabnahme auf der Westseite besser dokumentieren zu können, wurde die Messlinie in diesem Bereich verlängert und der neue Fotostandort GPS2011 definiert. Die beobachtete Entwicklung kann zu Murgängen führen. (Chr. Barandun)

89 Verstankla

2010: Am Tag der Gletschermessung war das Wetter sehr wechselhaft. Im Winter 2009/10 waren die Temperaturen und die Schneehöhen weitgehend unterdurchschnittlich. Zusammen mit wiederholten, meist wenig ergiebigen Schneefällen und nur sehr kurzen Schönwetterphasen führte dies zu einem mehrheitlich schwachen Schneedeckenaufbau. Der Verstankla-, wie der Chammgletscher zeigte blankes Eis. Die Gletscherzunge ist mit viel Blockschutt und Feinmaterial beladen. Die markierten Basispunkte sind nach wie vor gut auffindbar. Die Gletscherrandlinie wurde gleich wie in den letzten Jahren mit dem GPS-Gerät aufgenommen. Insgesamt sind 15 Gletscherrandpunkte eingemessen worden. Seit der letzten Messung hat sich der Gletscher um -10 m zurückgezogen. Der Rückzug ist etwa gleich gross wie im Vorjahr. (I. Bühler)

2011: Bei sehr schönem Wetter - dank eines Zwischenhochs - konnten die Messungen unter idealen Bedinungen durchgeführt werden. Der Winter 2010/11 war bezüglich Schneemengen sicher ein unterschurchschnittlicher Winter. Während er eher früh begonnen hatte, stieg die Regengrenze im Januar auf 2000 m.ü.M. Darauf folgten längere milde Schönwetterperioden. Die Oberfläche des Gletschers ist in den Randgebieten nach wie vor von viel Blockschutt überdeckt. In der schuttfreien Fläche lag das Eis blank. Die Gletscherrandpunkte, sowie 2 Basispunkte - total 14 Punkte - wurden mit dem GPS-Gerät aufgenommen. Neu wurde in dieser Messung der mittlere Rückzug des Gletschers über einen 10-Meter-Raster berech-

net. Seit der letzten Messung hat sich der Gletscher um 19.9 Meter zurückgezogen. Dies entspricht einer Verdoppelung der letztjährigen Werte. Die Stärken der drei Wasserabflüsse verhalten sich (von Nord nach Süd) wie 50%, zu 15%, zu 35%. Auf der ganzen Breite des Gletschers sind weitere kleinere Wasseraustritte festzustellen. Der nördliche Hauptabfluss führt viel Feinmaterial und ist stark beige eingefärbt, während die beiden anderen klares Wasser führen. Im Bereich der Gletscherzunge sind rechte Mengen Schutt und Feinmaterial (bis Sand) abgelagert, die in einem Murgang weiter verfrachtet werden könnten. (M. Maikoff)

90 Silvretta

2010: Luftbildaufnahmen am 22.9.2010, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 16.9.2011, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

91 Sardona

2010: Die Kontrolle fand am 24. September statt. Nach Sonne am Anfang zog Bewölkung auf. In der Regel ist ein Gletscherrand in allen Linien deutlich erkennbar. Die im letzten Jahr gemachte Feststellung, dass im Gletschervorfeld verschiedene, meist schuttbedeckte Eisflächen verbleiben, ist 2010 noch stärker ausgefallen. Wir gehen aber davon aus, dass keine Verbindung mehr zum eigentlichen Gletscher besteht. Die Vermutung, dass beim Punkt 2B die Messung 2009 zu weit gegangen ist, hat sich auch 2010 bestätigt. (T. Brandes)

2011: Die Kontrolle fand am 27. September statt. Die Verhältnisse waren gut (sonnig, gegen Ende zog Bewölkung auf). Die Messung erfolgte ab den Punkten 1B, 2B, 3B, 4B und 5B mit dem Fadenmessgerät (Geländemass) im bisherigen Azimut 289g (korrigierter Winkel). Optisch hat sich gegenüber 2010 am Gletscherrand nichts geändert: verschiedene, meist schuttbedeckte Eisflächen verbleiben am Gletscherrand. Was wo noch Verbindung aufweist, ist nicht immer mit Sicherheit festzustellen. Auf der Linie 1 ist der Gletscher massiv zurückgegangen. Dies hängt mit dem schleifenden Winkel zwischen Gletscherzunge und Messlinie zusammen. Die Linie 2 2008 ist definitiv zu lang gewesen, resp. der Gletscherrand ist näher beim Punkt. Somit haben wir uns wieder auf den Bereich festgelegt, den wir 2010 zusätzlich eingemessen haben. Der in der Linie 2 dennoch wieder gemessene Vorstoss ist eher mit der Unsicherheit des Randes als mit einem effektiven Vorrücken zu interpretieren. Die durchschnittliche Längenabnahme aus den Messungen beträgt somit -14.6 m. Aufgefallen ist die Veränderung am obersten Ende des Gletschers. Wo bisher eine durchgehende Eisfläche zu sehen war, ist nun eine deutliche Spalte/Rinne ersichtlich. Die Veränderung in der Eisdicke kann dort auch am nun deutlich höheren dunklen Felsenband erkannt werden. (T. Brandes)

92 Roseg

2010: Installation eines neuen Fixpunktes. Die Einzige von ehemals drei Nährzungen ist auf der Höhe der Coazhütte auch bald weggeschmolzen. Der Rückgang des Gletschers konnte dieses Jahr aufgrund technischer Probleme nicht bestimmt werden. (G. Bott)

2011: Die Gletscherzunge hat sich nun gänzlich von Sella-/Roseggletscher gelöst und ist "Toteis". Ab 2012: Sella- oder Rosegzunge bei Coazhütte messen. Enormer Abschmelzprozess am "Toteis". (G. Bott)

93 Tschierva

2010: Installation eines neuen Fixpunktes. (G. Bott)

2011: Zunge links stark geschmolzen. Bach führt enorm viel Wasser (Abschmelzprozess!) Diverse Holzfunde (G. Bott)

94 Morteratsch

2010: Installation eines neuen Fixpunktes. Neues Loch in Zunge entstanden. (G. Bott)

2011: Enorme Schmelzwassermenge. Linke Gletscherzungenhälfte gänzlich von Geröll eingedeckt. Einbruch des Gletschertores. Loch in Zungenmitte auf Felsabsatz hat sich stark erweitert. (G. Bott)

95 Calderas

2010: Gwächte beim See eingefallen. Toteis rechts und unter Gletscherzunge. (G. Bott)

2011: Gwächte 2010: weggeschmolzen/Vorstoss. Viel Toteis weggeschmolzen. Schlechtes Wetter. (G. Bott)

96 Tiatscha

2011: Ab 2012 muss Basislinie weiter nach Süden verschoben werden, damit Einsehbarkeit bei allen 5 Messpunkten gegeben ist! (G. Bott)

97 Sesvenna

2010: Konventionelle Messmethode & Zungenlinie mit GPS. (G.C. Feuerstein)

98 Lischana

2010: Gletscher war eingeschneit (ca. 10 - 15 cm Neuschnee). Konventionelle Messmethode & Zungenlinie mit GPS. (G.C. Feuerstein)

2011: Messung 2010 ungültig!!! Vergleich nur mit 2009 möglich (G.C. Feuerstein)

99 Cambrena

2010: Infolge Wintereinbruch schon nach Mitte Oktober keine Einmessung möglich. (G. Berchier)

2011: Rückzug von 42 m in 3 Jahren. (G. Berchier)

103 Bresciana

2010: Il fronte di questo ghiacciaio si trova ora a una quota di 2940 m slm. La parte terminale del ghiacciaio ha un andamento orizzontale ed è molto ripida. Il confronto con il 2009 mostra una diminzione di spessore tra i 0.50 e 1.15 metri ed un arretramento medio di 0.60 m. Il ghiacciaio è arretrato in media 7.0 m rispetto al 2007. (C. Valeggia)

2011: Il fronte di questo ghiacciaio si trova ora a una quota di 2941.70 mslm. La parte terminale del ghiacciaio ha un andamento orizziontale ed è molto ripida. Il confronto con il 2009 mostro una diminuzione di spessore 3.80 metri ed un arretramento medio rispetto al 2010 è di 13.0 m. (C. Valeggia)

104 Basodino

2010: Il confronto tra il profilo del 2009 e quello del 2010 mostra, nella zona misurata, una perdita di spessore che varia da 1.00 a 1.80 m. L'arretramento medio rispetto al 2009 è stato di 6.80 m. (C. Valeggia)

2011: Il confronto tra il profilo del 2010 e quello del 2011 mostra, nella zona misurata, una perdita di spessore che varia da 2.10 a 2.80 m. Come nel 2001, nel 2011 l'intero fronte del ghiacciaio è stato rilevato. L'arretramento medio in 10 anni è di circa 150 metri. Nella parte centrale arriva anche a circa 280 metri. L'arretramento medio rispetto al 2010 è di 19.20 m. (C. Valeggia)

105 Rossboden

2010: Da sich im Jahr 2009 ein grösserer Eissturz ereignet hat, wurden die Messpunkte vom Jahr 2008 verschüttet. 2010 wurden zwei neue Messpunkte eingerichtet. Vom Messpunkt 1 konnten 6 Messungen in verschiedene Richtungen durchgeführt werden. Beim Messpunkt 2 konnte leider kein geeignetes Resultat gemessen werden. Dieser Punkt ist für die elektronische Distanzmessung zu weit vom Gletscher entfernt. Der Hauptgletschter ist klar von der früheren Zunge getrennt. Der Eissturz vom letzten Jahr ist nun komplett mit Schutt überdeckt. (G. Marco)

2011: Für die Messung konnte nur Messpunkt 1 berücksichtigt werden. Messpunkt 2 konnte gar nicht mehr gefunden werden. Womöglich wurde diese Stelle stark ausgewaschen. (G. Marco)

109 Alpetli (Kanderfirn)

2010: Das Wetter am Tag der Messung war schön und sehr warm. 2 kleine Gletschertore. Relativ flaches Gletschervorfeld. (U. Fuhrer)

2010: 3 kleine Gletschertore. (U. Fuhrer)

111 Ammerten

2010: Die Bedingungen waren sehr gut - erster frischer Schnee, der aufgrund des super schönen Föhntages grösstenteils grad wieder abschmolz. (W. Hodel)

2011: Auffallend ist dieses Jahr besonders die Nordflanke des (Mittel-) Wildstrubels, die sozusagen wie leergefegt scheint. In den Gräben ist so gut wie kein Altschnee mehr vorhanden. Dass der Gletscher am Punkt 1 mehr als 10 m zurückgegangen ist, hat wohl auch damit zu tun, dass wir dort immer genau derselben Messrichtung, mittlerweile sehr am linken Rand der Zunge (in dem kleinen Tälchen) auf das Eis stossen. Wenn nun am Rande das Eis auch nur ein bisschen schmilzt, kann das aber in der Längsrichtung relativ viel ausmachen und ist nicht sehr stetig. (W. Hodel)

112 Dungel

2010: Am Tag der Vermessung herrschten ideale Bedingungen. Das Zungenende konnte so ohne Probleme eingemessen werden. (A. Wipf)

113 Gelten

2010: Beim Gletscher präsentierte sich die Zunge schneefrei. Es zeigte sich jedoch, dass diese - wie schon in den letzten Jahren - nun aber noch markanter asymmetrisch abgeschmolzen ist, sodass eine Angabe der Längenänderung nicht sehr sinnvoll erscheint. Zudem liegt der östliche Teil unter einer Obermoräne und ist, wenn überhaupt, nur noch marginal mit der "aktiven" Zunge verbunden. (A. Wipf)

114 Plattalva

2010: Punkt 5: Rand spitzwinklig zu Messrichtung. Ganzer Gletscher schneebedeckt (Herbst-schnee) (U. Steinegger)

2011: Punkt 5: Gletscherrand spitzwinklig zu Messrichtung. Gletscherzunge aper, etwas Neuschnee in höheren Lagen, kaum Firnschnee (U. Steinegger)

115 Scaletta

2010: Gletscherende unter Schutt, sehr schwer zu eruieren. Der Gletscher ist furchtbar am leiden. Es hatte Unmengen Wasser im Gletscherbach. Von links her beginnt das braune Schuttband den oberen Gletscherteil gegen den Felsen hin vom Unteren zu trennen. Weiter unten gibt es nur noch Toteis. (B. Teufen)

2011: Mit Werkzeugen nach Eis unter dem Schutt gesucht. Messung sehr schwierig. (B. Teufen)

117 Valleggia

2010: Il suo fronte continua ad appiattirsi e la diminuzione di spessore dal 2009 al 2010 è notevole (da 1.00 a 3.25 m). L'arretramento medio rispetto al 2009 è stato di 7.90 m. (C. Valeggia)

2011: Il suo fronte continua ad appiattirsi e la diminuzione di spessore dal 2010 al 2011 è notevole (da 2.70 a 4.90 m). L'arretramento medio rispetto al 2010 è di 4.30 m. (C. Valeggia)

118 Val Torta

2010: Il ghiacciaio è in fase di estinzione (ghiaccio morto) e non ha più una zona di alimentazione. La parte terminale del ghiacciaio è ricoperta da neve. Dal 2008 non ci sono state variazioni di lunghezza. Quest'anno non è stato misurato. (C. Valeggia)

2011: Il ghiacciaio è in fase di estinzione (ghiaccio morto) e non ha più una zona di alimentazione. Lungo il suo fronte troviamo un nevaio con un spessore 5.0 metri. Il confronto tra il profilo anno 2008 e 2011 mostra una diminuzione nella parte alta del ghiacciaio di 4.80 m. L'arretramento medio rispetto al 2009 è di 44.10 m. (C. Valeggia)

119 Cavagnoli

2010: La parte terminale del ghiacciaio continua a ritirarsi, ad appiattirsi e a perdere spessore favorita dal fatto che termina in una zona pianeggiante con un laghetto formatosi una decina di anni fa e rilevato anche nell'ultima edizione della CN 1:25.000. Il ghiacciaio non dispone più di una zona di accumulo e la tendenza in atto da parecchi anni, di dividersi in campi isolati di ghiaccio morto, continua. Lo spessore di ghiaccio scioltosi nel 2010 varia da 2.30 a 3.14 metri. L'arretramento medio rispetto al 2009 è stato di 9.30 m . (C. Valeggia)

2011: La parte terminale del ghiacciaio continua a ritirarsi, ad appiattirsi e a perdere spessore favorita dal fatto che termina in una zona pianeggiante con un laghetto formatosi una decina di anni fa e rilevato anche nell'ultima edizione della CN1:25000. Il ghiacciaio non dispone più di una zona di accumulo e la tendenza in atto da parecchi anni, di dividersi in campi isolati di ghiaccio morto, continua. Lo spessore di ghiaccio scioltosi dal 2010 al 2011 varia da 0.50 a 5.40 metri. L'arretramento medio rispetto al 2010 è stato di 24.40 m. (C. Valeggia)

120 Corno

2010: La parte di ghiacciaio rimasta attiva (ossia con una zona d'accumulo ed una di ablazione) ha perso da 1.00 a 3.30 m di spessore nel periodo 2009-2010. L'arretramento medio rispetto al 2009 è stato di 6.50 m. (C. Valeggia)

2011: La parte di ghiacciaio rimasta attiva (ossia con una zona d'accumulo ed una di ablazione) ha perso da da 1.20 a 3.00 m di spessore nel period 2010-2011. L'arretramento medio rispetto al 2010 è stato di 3.00 m. (C. Valeggia)

173 Seewjinen

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

174 Hohlaub

2010: Luftbildaufnahmen am 20.9.2010, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2011: Luftbildaufnahmen am 15.9.2011, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

352 Croslina

2010: Il rilievo del profilo ha mostrato variazioni di spessore da 1.10 a 3.60 m mentre la lunghezza si è ridotta in media di 1.10 m rispetto al 2009. (C. Valeggia)

2011: Il rilievo del profilo ha mostrato variazioni di spessore da 1.50 a 2.45 m mentre la lunghezza si è ridotta in media di 4.10m rispetto al 2010. (C. Valeggia)

353 Vadrecc di Camadra

2010: Questo ghiacciaio si trova nel comune di Ghirone ad una quota di 2924 m slm, tra la Cima di Camadra ed il Piz Medel. Il ghiacciaio è stato misurato l'ultima volta il 28. settembre 2006. Il confronto tra il profilo del 2006 e quello del 2010 mostra una perdita di spessore che varia da 2.80 a 7.85 m. Il ghiacciaio è arretrato in media 2.40 m rispetto al 2006. (C. Valeggia)

2011: Il confronto con il profilo del 2010 mostra una perdita di spessore di 2.10 m. Il ghiacciaio è arretrato in media 5.60 rispetto al 2010. (C. Valeggia)

C Investigators

C.1 Length Variation (2011)

Glacier	No.	Investigator
Albigna	116	AfW/GR, Curdin Mengelt
Allalin	11	VAW/ETHZ, Andreas Bauder
Alpetli (Kanderfirn)	109	KAWA/BE, Ueli Fuhrer
Ammerten	111	Walter Hodel
Arolla (Mont Collon)	27	DWL/VS, Frédéric Pralong
Basòdino	104	SF/TI, Claudio Valeggia
Bella Tola	21	currently not observed
Biferten	77	Hanspeter Klauser
Blüemlisalp	64	KAWA/BE, Ueli Fuhrer
Boveyre	41	DWL/VS, James Medico
Breney	36	Jean-Jacques Chabloz
Bresciana	103	SF/TI, Claudio Valeggia
Brunegg (Turtmann)	20	DWL/VS, Albin Brigger
Brunni	72	AFJ/UR, Jann Marx
Calderas	95	AfW/GR, Giachem Bott
Cambrena	99	AfW/GR, Gilbert Berchier
Cavagnoli	119	SF/TI, Claudio Valeggia
Cheillon	29	DWL/VS, Olivier Bourdin
Corbassière	38	VAW/ETHZ, Andreas Bauder
Corno	120	SF/TI, Claudio Valeggia
Croslina	352	SF/TI, Claudio Valeggia
Damma	70	AFJ/UR, Martin Planzer
Dungel	112	Andreas Wipf
Eiger	59	KAWA/BE, Rudolf Zumstein
En Darrey	30	DWL/VS, Olivier Bourdin
Fee (Nord)	13	DWL/VS, Urs Andenmatten
Ferpècle	25	DWL/VS, Frédéric Pralong
Fiescher	4	DWL/VS, Peter Aschilier
Findelen	16	VAW/ETHZ, Andreas Bauder
Firnalpeli (Ost)	75	AWR/OW, Christoph Rüedlinger
Forno	102	AfW/GR, Heiko Lohre
Gamchi	61	KAWA/BE, Roland Descloux
Gauli	52	Rudolf Straub
Gelten	113	Andreas Wipf

Glacier	No.	Investigator
Giétro	37	VAW/ETHZ, Andreas Bauder
Glärnisch	80	Hanspeter Klauser
Gorner	14	Stefan Walther
Grand Désert	31	DWL/VS, François Vouillamoz
Grand Plan Névé	45	FFN/VD, JPh. Marlétaz
Gries	3	VAW/ETHZ, Andreas Bauder
Griess	74	AFJ/UR, Beat Annen
Griessen	76	AWR/OW, Christoph Rüedlinger
Grosser Aletsch	5	VAW/ETHZ, Andreas Bauder
Hohlaub	174	VAW/ETHZ, Andreas Bauder
Hüfi	73	AFJ/UR, T. Arnold
Kaltwasser	7	DWL/VS, Martin Schmidhalter
Kehlen	68	AFJ/UR, Martin Planzer
Kessjen	12	VAW/ETHZ, Andreas Bauder
Lang	18	DWL/VS, Hans Henzen
Lavaz	82	AfW/GR, Renaldo Lutz
Lenta	84	AfW/GR, Bernard Riedi
Limmern	78	Urs Steinegger
Lischana	98	AfW/GR, Gian Cla Feuerstein
Lämmern	63	KAWA/BE, Christian von Grünigen
Mittelaletsch	106	currently not observed
Moiry	24	Marcel Barmaz
Moming	23	DWL/VS, Pascal Stoebener
Mont Durand	35	Jean-Jacques Chabloz
Mont Fort (Tortin)	32	DWL/VS, Francois Vouillamoz
Mont Miné	26	DWL/VS, Frédéric Pralong
Morteratsch	94	AfW/GR, Giachem Bott
Mutt	2	Ueli Wittorf
Oberaar	50	Flotron AG
Oberaletsch	6	DWL/VS, Christian Theler
Oberer Grindelwald	57	Hans Boss
Otemma	34	Jean-Jacques Chabloz
Palü	100	AfW/GR, Gilbert Berchier
Paneyrosse	44	FFN/VD, JPh. Marlétaz
Paradies	86	AfW/GR, Cristina Fisler
Paradisino (Campo)	101	AfW/GR, Gilbert Berchier
Pizol	81	KFA/SG, Thomas Brandes
Plattalva	114	Urs Steinegger
Porchabella	88	AfW/GR, Christian Barandun
Prapio	48	FFN/VD, Jacques Binggeli
Punteglias	83	AfW/GR, Christian Buchli
Rhone	1	VAW/ETHZ, Andreas Bauder
Ried	17	DWL/VS, Peter Rovina
Roseg	92	AfW/GR, Giachem Bott
Rossboden	105	DWL/VS, Gerold Marco
Rotfirn (Nord)	69	AFJ/UR, Martin Planzer

Glacier	No.	Investigator
Rätzli	65	currently not observed
Saleina	42	DWL/VS, James Medico
Sankt Anna	67	AFJ/UR, Jann Marx
Sardona	91	KFA/SG, Thomas Brandes
Scaletta	115	Bernardo Teufen
Schwarz	62	KAWA/BE, Evelyn Coleman Brantschen
Schwarzberg	10	VAW/ETHZ, Andreas Bauder
Seewjinen	173	VAW/ETHZ, Andreas Bauder
Sesvenna	97	AfW/GR, Gian Cla Feuerstein
Sex Rouge	47	FFN/VD, Jacques Binggeli
Silvretta	90	VAW/ETHZ, Andreas Bauder
Stein	53	Rudolf Straub
Steinlimmi	54	Rudolf Straub
Sulz	79	AW/GL, Marina Schaller
Suretta	87	AfW/GR, Cristina Fisler
Tiatscha	96	AfW/GR, Giachem Bott
Tiefen	66	AFJ/UR, Jann Marx
Trient	43	Jacques Ehinger
Trift (Gadmen)	55	VAW/ETHZ, Andreas Bauder
Tsanfleuron	33	DWL/VS, JD. Brodard
Tschierva	93	AfW/GR, Giachem Bott
Tschingel	60	KAWA/BE, Rudolf Zumstein
Tseudet	40	DWL/VS, James Medico
Tsidjiore Nouve	28	DWL/VS, Frédéric Pralong
Turtmann	19	DWL/VS, Albin Brigger
Unteraar	51	Flotron AG
Unterer Grindelw	vald 58	VAW/ETHZ, Andreas Bauder
Val Torta	118	SF/TI, Claudio Valeggia
Valleggia	117	SF/TI, Claudio Valeggia
Valsorey	39	DWL/VS, James Medico
Verstankla	89	AfW/GR, Michel Maikoff
Vorab	85	AfW/GR, Jürg Brunold
Wallenbur	71	AFJ/UR, Pius Kläger
Zinal	22	Marcel Barmaz
Zmutt	15	currently not observed
AF.J/UR	Amt für Forst und I:	aqd. Uri
AfW/GR	Amt für Wald, Grau	bünden
AW/GL	Abteilung Wald, Glarus	
AWR/OW	Amt für Wald und R	aumentwicklung, Obwalden
DWL/VS	Dienststelle für Wale Wallis/Valais	d und Landschaft/Service des forêts et du paysag
FFN/VD	Service des forêts, d	e la faune et de la nature, Vaud
KAWA/BE	Amt für Wald, Bern	•
KFA/SG	Waldregion 3 Sargan	ns, St. Gallen
SF/TI	Sezione forestale, Ti	cino
VAW/ETHZ	Versuchsanstalt für \	Wasserbau, Hydrologie und Glaziologie, ETH Zürich

Glacier	No.	Investigator
Allalin	11	VAW/ETHZ, Andreas Bauder
Basòdino	104	Giovanni Kappenberger
Clariden	141	Giovanni Kappenberger
Corbassière	38	VAW/ETHZ, Andreas Bauder
Findelen	16	GIUZ, Nadine Salzmann and colleagues /
		UFR, Matthias Huss
Giétro	37	VAW/ETHZ, Andreas Bauder
Gries	3	VAW/ETHZ, Martin Funk
Hohlaub	174	VAW/ETHZ, Andreas Bauder
Pizol	81	VAW/ETHZ / UFR, Matthias Huss
Plaine Morte	65	UFR, Matthias Huss
Schwarzberg	10	VAW/ETHZ, Andreas Bauder
Silvretta	90	VAW/ETHZ, Andreas Bauder
Tsanfleuron	33	UFR, Matthias Huss

C.2 Mass Balance and Velocity

VAW/ETHZ	Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich
GIUZ	Geographisches Institut, Universität Zürich
UFR	Département de Géosciences, Université de Fribourg