The Swiss Glaciers

2003/04 and 2004/05

Glaciological Report (Glacier) No. 125/126

The Swiss Glaciers

2003/2004 and 2004/2005

Glaciological Report No. 125/126

Edited by Andreas Bauder¹ and Roger Rüegg¹

With contributions from Andreas Bauder¹, Christoph Frei², Martin Funk¹, Martin Hoelzle³, Matthias Huss¹, Giovanni Kappenberger⁴, Frank Paul⁵

¹ Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich ² MeteoSwiss ³ Department of Geosciences, University of Fribourg

⁴ 6654 Cavigliano

⁵ Department of Geography, University of Zurich

Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Science (SCNAT)

- c/o Laboratory of Hydraulics, Hydrology and Glaciology (VAW) at the Swiss Federal Institute of Technology Zurich (ETH Zurich) Gloriastrasse 37/39, CH-8092 Zürich, Switzerland http://glaciology.ethz.ch/swiss-glaciers/
- © Cryosperic Commission (EKK) 2009

ISSN 1424-2222

Imprint of author contributions:

Andreas Bauder	:	Chapt. 1, 2, 3, 4, 5, App. A, B, C
Christoph Frei	:	Chapt. 2
Martin Funk	:	Chapt. 1, 4
Martin Hoelzle	:	Chapt. 6
Matthias Huss	:	Chapt. 4
Giovanni Kappenberger	:	Chapt. 4
Frank Paul	:	Chapt. 7

Ebnoether Joos AG print and publishing Sihltalstrasse 82 Postfach 134 CH-8135 Langnau am Albis Switzerland

Cover Page: Oberaargletscher (Martin Funk, 09.08.2005)

Summary

During the 125th and 126th year under review by the Cryospheric Commission, Swiss glaciers continued to lose both length and mass. The dominant weather conditions of this measurement period and the effects of climate warming left clear traces. In autumn 2004, a length variation was determined for 93 of the 102 glaciers observed, while one year later such a result was obtained for 95 of 101 glaciers. In the two observation periods, 2003/2004 and 2004/2005, Swiss glaciers experienced further losses in length. Most of the measurement values lie between 0 and -30 m in both of these periods.

Detailed mass balance figures were obtained for the three glaciers: Basòdino, Gries and Silvretta, and point measurements taken at several additional glaciers. While mass losses remained moderate during the first observation period, the glaciers suffered significant losses during the second, mainly due to diminished precipitation in winter. The two complete time series of Griesgletscher and Silvrettagletscher have been reanalysed and homogenised with independently derived ice volume changes. Flow measurements were taken at selected glaciers in the Mauvoisin and Mattmark regions as well as for the Aaregletscher. The trend continued toward diminishing velocities, a clear reflection of the reduction in ice thickness due to lasting negative mass balances of the glaciers. The area of each glacier in the observation network has been updated for the three existing inventories of the states 1850, 1973 and 1998/99. For the first time results from measurements of englacial temperatures at the Colle Gnifetti (Gornergletscher, Monte Rosa Massif) are presented.

In recent years, an awareness has grown in the general public of the significance of glaciers as storers of water and for tourism purposes. After the intense melting experienced during the hot summer months with minimal precipitation, the glaciers were able to ensure the availability of water for irrigation, drinking water and energy production purposes. Glacier changes in some ski areas have forced the operators to be very adaptable. Following the strong retreat of Triftgletscher a lake formed in the proglacial area. Beside some hazard issues local authorities have to deal with, the lake and the ongoing changes of the glacier tongue attracted a lot of visitors.

Published Reports

Annual reports of the Swiss glaciers started in the year of 1880 by F.A. Forel (1841-1912).

Authors of the annual reports:	No.	Year
F.A. Forel et L. Du Pasquier	1 - 17	1880 - 1896
F.A. Forel, M. Lugeon et E. Muret	18 - 27	1897 - 1906
F.A. Forel, E. Muret, P.L. Mercanton et E. Ar-	28	1907
gand		
F.A. Forel, E. Muret et P.L. Mercanton	29 - 32	1908 - 1911
E. Muret et P.L. Mercanton	33 - 34	1912 - 1913
P.L. Mercanton	35 - 70	1914 - 1949
P.L. Mercanton	71 - 75	1950 - 1954
A. Renaud	76 - 83	1955 - 1961/62
P. Kasser	84 - 91	1962/63 - 1969/70
P. Kasser und M. Aellen	92 - 104	1970/71 - 1982/83
M. Aellen	105 - 115	1983/84 - 1993/94
M. Aellen, M. Hoelzle und D. Vonder Mühll	116	1994/95
M. Hoelzle und D. Vonder Mühll	117	1995/96
M. Hoelzle, D. Vonder Mühll, A. Bauder und	118	1996/97
G.H. Gudmundsson		
M. Hoelzle, D. Vonder Mühll und M. Maisch	119	1997/98
M. Hoelzle, D. Vonder Mühll, M. Schwikowski	120	1998/99
und H.W. Gäggeler		
A. Bauder, A. Vieli und M. Hoelzle	121	1999/00
A. Bauder und M. Hoelzle	122	2000/01
A. Bauder, C. Schär und H. Blatter	123 - 124	2001/02 - 2002/03
A. Bauder, J. Faillettaz, M. Funk und A. Pralong	125 - 126	2003/04 - 2004/05

Authors and editors of the glaciological two year reports:

P. Kasser, M. Aellen und H. Siegenthaler	95/96 - 99/100	1973/74 - 1978/79
M. Aellen	101/102	1979/80 - 1980/81
M. Aellen und E. Herren	103/104 - 111/112	1981/82 - 1990/91
E. Herren und M. Hoelzle	113/114	1991/92 - 1992/93
E. Herren, M. Hoelzle and M. Maisch	115/116 - 119/120	1993/94 - 1998/99
E. Herren, A. Bauder, M. Hoelzle and M. Maisch	121/122	1999/00 - 2000/01
E. Herren and A. Bauder	123/124	2001/02 - 2002/03
A. Bauder and R. Rüegg	125/126	2003/04 - 2004/05

Contents

Su	ummary	iii
Ρι	Published Reports	iv
1	Introduction 1.1 Glacier Monitoring in Switzerland (GLAMOS)	1 1
2	 Weather and Climate 2.1 Weather and Climate in 2003/04	7 7 9 ue 10
3	Length Variation3.1Introduction3.2Length Variations in 2003/043.3Length Variations in 2004/053.4Length Variations in 2003/04 and in 2004/05, Summary3.5Length Variations - Statistics for 1880-2005	15 15 16 17 24
4	Mass Balance4.1Introduction, cumulative mean specific mass balances4.2Mass Balance in 2003/044.3Mass Balance in 2004/054.4Ghiacciaio del Basòdino4.5Griesgletscher (Aegina)4.6Silvrettagletscher4.7Claridenfirn4.8Grosser Aletsch (Jungfraufirn)4.9Homogenized time-series	29 29 31 33 33 37 41 45 49 51
5	Velocity 5.1 Introduction 5.2 Glacier du Giétro 5.3 Glacier de Corbassière 5.4 Aaregletscher 5.5 Mattmark	55 55 57 60 63

6	Englacial Temperature6.1 Introduction6.2 Colle Gnifetti (Monte Rosa)	71 71 72
7	Glacier inventory 7.1 Updated glacier area from the Swiss Glacier Inventory 2000	75 75
Re	eferences	79
Ac	cknowledgements	83
Α	Remote Sensing A.1 Aerial photographs	85 85
В	Remarks on individual glaciers	88
C	Investigators	108 108 111 111

1 Introduction

Systematic and long-term records of glacier changes in Switzerland started in 1880 with annual length change measurements of selected glaciers. At that time these measurements were motivated by questions about past and future ice ages. In the meantime, the goals of the worldwide glacier monitoring programs have evolved and multiplied. Glacier change data are primarily necessary for investigations of the glacier-climate interactions. The data are also important for the assessment of water resources, sea level rise and natural hazards. Finally, the broad public manifests an increasing interest in glacier changes.

This report is the new volume No. 125/126 in the series "The Swiss Glaciers" and presents the results of the two observational periods 2003/04 and 2004/05. It carries on the long tradition of yearbooks documenting monitored fluctuations of Swiss glaciers since 1880 (see page iv). Data and digital versions of the present and earlier volumes can be found at http://glaciology.ethz.ch/swiss-glaciers. Thanks to continuous efforts of many people, public and private organisations in Switzer-land long time-series of data related to glacier changes do exist.

The Swiss glacier monitoring program was reviewed in 2002 by the Swiss Academy of Sciences (SCNAT) in order to ensure its compability to the international integrated monitoring concepts for large glacier ensembles. The working group for glaciers within the Cryospheric Commission (EKK) of SCNAT has thereupon elaborated the now ongoing program for glacier monitoring in Switzerland (GLAMOS). It has been adopted by the Cryospheric Commission in March 2007 and is presented in the following chapter 1.1.

The results of the Swiss glacier monitoring contribute to the international efforts to document glacier fluctuations as part of environmental monitoring initiatives of the Global Terrestrial Network for Glaciers (GTN-G) within the the Global Terrestrial and Climate Observing System (GTOS/GCOS) and are reported to the World Glacier Monitoring Service (WGMS).

The present report is based on a short overview of general outcomes published in German and French in the magazine "Die Alpen - Les Alpes" of the Swiss Alpine Club (Bauder et al., 2006).

1.1 Glacier Monitoring in Switzerland (GLAMOS)

The main focus of the Swiss glacier monitoring is oriented towards glacier-climate interactions. With the increasing human impact on the climate system, climate warming is expected to accelerate in near future. It has become highly probable, that in near future large mountain regions will lose their glaciers. The glacier monitoring activities should be regularly adapted to the ongoing glacier

changes. The incorporation of modern monitoring technologies such as remote sensing should help to improve the data quality. Such new methods should be more frequently used in combination with the traditional in-situ measurement techniques. Results from Swiss glacier monitoring should allow analyses of glacier changes from a local to a global scale and is based on the available long-term data. The monitoring concept involves the determination of the following measurements: (1) mass balance and volume change, (2) flow speed, (3) length change, (4) inventory of glacier characteristics, and (5) englacial temperature. In the following subsections a brief overview of the measurement aims, the current state of the observations, problems encountered, and perspectives for the future are presented.

(1a) Mass balance:

<u>Aims</u>: Mass balance measurements are essential for the investigation of glacier changes in the context of climate change.

<u>Current status</u>: At present, ongoing long-term measurement series exist for the following glaciers: Basòdino, Gries and Silvretta (central and eastern Swiss Alps). Top priority should be given to continuing these series. Mass balance measurements are carried out on a stake network at Glacier du Giétro (western Swiss Alps). For all four glaciers (including Giétro) the glaciological measurement method is used to calculate the glacier wide average balance and the seasonal balance (not for Giétro). In addition, long-term index measurements (stake measurement at individual sites) with seasonal resolution are available for the Grosser Aletschgletscher (Jungfraufirn), at Claridenfirn and in the Mattmark region. A comprehensive measurement series with seasonal resolution exists for the period between 1947 and 1984 for the glaciers Limmern and Plattalva, but was, unfortunately, discontinued.

<u>Problems:</u> As difficulties could arise in the medium term with the continuation of these measurements, it is important that the EKK develops alternative solutions well in time.

<u>Perspectives:</u> For all mass balance measurement series, it is necessary to check, and possibly adjust, the representativity of the individual stake locations by means of spatial mass balance modelling. These models can also be used to improve the spatial extrapolation of stake measurements (point) to the entire glacier (area). At the present time various research projects are underway at the GIUZ, IfU and the VAW in which climatic data are used to provide spatial and temporal models of mass balances. The EKK should continue to investigate the extent to which the results of these projects can be incorporated into the existing measurement program.

(1b) Volume change:

<u>Aims:</u> The annual mass balance measurements according to the glaciological method are to be complemented at 5- to 10-year intervals with the determination of volume changes for the entire glacier. This random sample is to be completed by the determination of ice volume changes for an additional number of glaciers.

<u>Current status</u>: Volume changes at intervals of 5 to 10 years were determined for the following 18 glaciers: Aletsch, Allalin, Basòdino, Clariden, Corbassière, Giétro, Gorner, Gries, Hohlaub, Kessjen, Limmern, Plattalva, Rhone, Schwarzberg, Seewijnen, Silvretta, Trift and Unteraar.

<u>Problems</u>: It must be assured that the aerial photographs for the selected glaciers are taken at the right time and under optimal conditions (maximal melting-out of the glacier) on the predetermined flight paths (subsequent flights by Swisstopo are generally not adequate).

<u>Perspectives:</u> In future, volume changes should be determined not only for selected glaciers in the mass balance programme, but also at a greater number of yet-to-be-established time intervals. Data are available for the determination of volume changes over approximately the past 100 years for a total of about 25 glaciers (the 18 mentioned above, as well as Arolla, Findelen, Morteratsch, Trient, Unterer Grindelwald, Vestankla and Zinal). In future, other suitable methods (e.g. laser scanning) should be considered in addition to classic photogrammetry.

(2) Flow speed:

<u>Aims:</u> Time series of surface velocities provide important data for numeric glacier flow models. Information can also be acquired on how different glacier geometries influence the flow field.

<u>Current status</u>: At present, surface movement is being determined with the aim of continuing this procedure without gaps on the following 6 glaciers: Allalin, Corbassière, Giétro, Oberaar, Schwarzberg and Unteraar.

Problems: None at present.

<u>Perspectives</u>: The concurrent determination of the flow velocity at existing stake networks for the mass balances makes obvious sense, and the additional efforts required should be kept within reasonable limits through the use of certain measurement instruments such as GPS and tachymeters.

(3) Length variation:

<u>Aims:</u> Length variations are at the end of the process chain of: climate \rightarrow mass balance \rightarrow geometry \rightarrow length variation. In contrast to mass balance, length variations offer a rather indirect indication of climate change. It is also, for a broad public, certainly the clearest signal of climatic change. It is possible to obtain a general overview by using an extensive sample of every size and type of glacier throughout all regions of the Swiss Alps.

<u>Current status</u>: At present, of 161 glaciers with documented observations, 110 are being observed actively. The concept employed until now of using local people with no specialized training to carry out the observations has proven successful. These so-called "glacier surveyors" are also able to give useful information about potentially dangerous hazardous changes, for example, the formation of proglacial lakes.

<u>Problems</u>: Many of the existing length variation measurement series have rather large gaps or are not geo-referenced.

<u>Perspectives:</u> In order to ensure optimal data quality, continuity and representativity of the measurement series, it is essential to continue these measurements. Important functions, for example, the provision of detailed observations and photo documentation on site, are still, as ever, fulfilled by the use of local observers, and this practice also serves to educate the general public. However, improvements are needed in the training and support given to the local observers. There should also be regular verification of the suitability of the measurement method in use, and adjustments as called for in each individual situation. In recent years new measurement methods have been developed, especially modern terrestrial, aerial and satellite procedures. These represent a valuable addition to the in-situ surveys and should in future be integrated into the regular measurement network. It would also be desirable to include data from Swisstopo, which regularly collects relevant information. By analyzing long time series of glacier changes, information about past local temperature and precipitation regimes can be obtained. To this end, the time series must be investigated using the appropriate inversion procedures. Research is still required in this field.

(4) Inventory of glacier characteristics:

<u>Aims:</u> Glacier inventories provide a summary of the basic data (delineation and surface area) for a particular point in time of an as-comprehensive-as-possible sub-sample of all glaciers, thus furnishing an important foundation for numerous glaciological, hydrological, climatological and geomorphological investigations. These inventories should be conducted again every few decades. <u>Current status:</u> There are glacier inventories in digital form available for the Swiss Alps for the years 1850 and 1973 (complete), and for the year 1998/99 (incomplete, derived from satellite data). The inventories from 1850 and 1973 are particularly suitable for all kinds of modelling, as the glaciers were in relative equilibrium at the time the inventories were made. The glacier delinations for the years 1850 and 1973 appear in the digital version of the Atlas of Switzerland (incl. important additional details on each glacier), while the SGI2000 satellite-based inventory is found in the GLIMS database, accessible via a web browser.

<u>Problems:</u> Along with the drastic changes in glacier geometry occurring since 1850, and even more extremely in the last 20 years, other problems which need to be tackled have arisen in the evaluation of the data. A visual check is of critical importance in addition to the automated determination of glacier delineations from satellite data. Those zones which have snow, debris and hard shadows are in particular need of precise checking and manual correction. The amount of time and effort required is not to be underestimated.

<u>Perspectives:</u> It is recommended to use multispectral satellite data when compiling or updating an inventory, as this enables a swift and easy determination of glacier characteristics for large-scale samples by means of automated glacier mapping linked with the GIS (Geographic Information System) and digital elevation models (DEMs). Top priority is to be assigned to preparing digital glacier delineations (vector lines) in order to determine, in these times of rapid geometric changes in many glaciers (disintegration), which of the glaciers are affected by these changes. The EKK/SCNAT should ensure that inventories are taken in good time, for example, at intervals of approx. every 10 years. In the aftermath of years such as 2003 with extreme temperature conditions, it makes good sense to introduce shorter intervals, specific random samples (in view of the albedo effects

on the mass balance), or qualitative overviews (e.g., formation or development of lakes). From the standpoint of the EKK/SCNAT, it would be worthwhile to make better use of the contributions of Swisstopo, provided as part of its regular, routine collection of important characteristics.

(5) Englacial temperature:

<u>Aims:</u> The measurement of englacial temperature has not been a regular component of the Swiss (or international) glacier observations so far. There are relatively few direct measurements, in particular at elevations above 4,000 m a.s.l., that are suitable to be used as representative climatic values. To this end, temperature measurements of firn and ice could be a valuable contribution to the documentation on thermal changes in glaciers at high elevations.

<u>Current status</u>: Colle Gnifetti is a suitable location for this purpose. Extensive investigations have been conducted since the 1970s on this firn saddle, especially in connection with core drilling for paleo-climatic studies. In addition, firn temperature measurements have been taken since 1983, and will from now on be continued at 5- to 10-year intervals at the same location each time.

<u>Problems</u>: These measurements are very demanding in terms of logistics and the instruments required.

<u>Perspectives:</u> A nearby automatic weather station would be a valuable addition to the firn temperature measurements.

2 Weather and Climate

The years 2004 and 2005 were, just like the previous two, among the warmest throughout the world since instrumental measurements were begun in 1860. The global mean temperature for the earth's surface surpassed the long-term mean value from 1961 to 1990 by $+0.44^{\circ}$ C to $+0.48^{\circ}$ C (WMO, 2005). The warmest year on record remains 1998, while the past ten years. i.e., 1996 to 2005, are the warmest years recorded in the measurement series since 1861, with the exception of 1996.

In Switzerland, too, the two years under review were warm, with minimal precipitation. The second one in particular had a very hot summer and very low precipitation amounts. A short summary of the climate conditions in Switzerland during the two periods under review is presented in the following two sections. The periods refer to the hydrological year (October to September). The focus is on the three parameters temperature, precipitation and sunshine duration most relevant to interpret glacier evolution. Both the weather and the climate data are taken from reports by the Federal Office of Meteorology and Climatology (MeteoSwiss) (MeteoSchweiz, 2004b, 2005b).

2.1 Weather and Climate in 2003/04

Weather and Climate Conditions in the Hydrological Year 2003/04

In the first period – the hydrological year 2003/04 – the winter season began already at the beginning of October with snowfall down to the low-lying areas. Further snowfall, especially in mid- and late March, made this winter a snow-rich one, on the whole. The first half of 2004 was characterized by several strong temperature variations and precipitation events. After the summer-like hot spell at the beginning of June, July was extremely variable, while summer fully returned during August, followed by a mild Indian summer. Overall, the 2003/04 hydrological year contained no extreme meteorological events, and no individual month was highlighted by significant deviations in temperature, precipitation, or duration of sunshine, anywhere in Switzerland.

Key Climatic Features from the "Monthly Weather Reports of MeteoSwiss"

2003	
October	Powerful intrusion of cold air, snow down to the lowlands on the north side of the Alps
November	Foehn winds and mild, wet in the south

The Swiss Glaciers 2003/04 and 2004/05

December	Influence of foehn, sunny in the Swiss plateau, abundant snow in the south – sunny, cold Christmas
Year overall	Extremely warm, sunny and very little precipitation – record summer
2004	
January	Abundant precipitation, storms from the west, abundant snow at month's end
February	Spring-like and sunny to start, more winter-like after mid-month
March	First winter-like, warm at mid-month, than heavy snowfall in the pre-alpine regions
April	Abundant rain in the south, dry in the north, foehn winds, but wet and cool over Easter
May	Changeable, intrusion of winter in the mountains at start, mid-summer tempera- tures around mid-month
June	Changeable, heavy rainfall in central Switzerland, extremely dry in southern Switzerland
July	Within long-term average. Widespread hailstorms on 8 th July north of the Alps
August	Very warm and humid, heavy storms in the west – then changeable
September	Unseasonably warm due to late summer conditions in the beginning – dry in the west and south
Year overall	Warmer than normal and variable – hailstorm in the Swiss plateau

Temperature

In the first period under review, no individual month was either extremely cold or extremely warm. In all regions of the country, the months of November, April and August of the 2003/04 period were excessively warm. Only the month of October was colder than the long-term mean. The values in the Alps in 2004 during the radiation-intensive summer months, which are of importance for snowmelt (May and June) and for the disappearance of the snow cover on the glacier (July to September), were 1°C above average.

Precipitation

In the first review year, precipitation was below average. There were high precipitation amounts in Valais and Grisons, and generally low precipitation in most parts of the rest of Switzerland. No single month anywhere was unseasonably dry or wet throughout whole Switzerland, although in every region during many months the precipitation conditions in general were clearly too dry. There were no major precipitation events of country-wide scale. The deviation of -6.2% from the norm is approximately the same as in the previous period.

Sunshine duration

In the first review period, the sunshine duration was within the normal range. None of the months throughout Switzerland, with the exception of October, was either extremely sunny or had below average sunshine duration. Surpluses were recorded in many regions in the months of February, May and September.

2.2 Weather and Climate in 2004/05

Weather and Climate Conditions in the Hydrological Year 2004/05

The second period began with an October that was warm and wet. The first intrusions of cold air did not occur before November, so in the early part of winter there were rather low amounts of snow. It was not until the snowfalls of mid-December that average snow depths could be recorded in many parts of the country. The mild start to the year was followed by a cold snap in mid-February and an unusually prolonged period of winter weather. Extremely low temperatures were recorded in early March in many places, and snow depths were above average at the end of the month throughout the country. Southern Switzerland experienced extremely dry conditions in the first months of 2005, followed by a warm spring and a hot June. Weather conditions remained variable but warm, and a more stable high-pressure situation did not return until the middle of July. The end of the hydrological year was characterized by increasing dryness, and an initial drastic drop in temperature in mid-September marked the approaching end of summer. The extreme event of late August, the horrendous storms, overshadowed the entire period. Excessive, intense rainfall lasting in some areas for more than 2 days resulted in flooding and debris flows.

Key Climatic Features from the "Monthly Weather Reports of MeteoSwiss"

2007

2004	
October	Mild, with foehn influence in the Alps. Otherwise abundant precipitation and very little sunshine in the south
November	Very little precipitation in the north, mild in the south with heavy orographically rainfall early in month
December	Sunny and mild at high elevations, low stratus in the north – changeable from mid-month $% \left({{\left[{{{\rm{S}}_{\rm{max}}} \right]_{\rm{max}}}} \right)$
Year overall	Warmer than normal and variable – hailstorm in the Swiss plateau
2005	
January	Sunny and spring-like, very winter-like later on. Sparse precipitation in the south
February	Mid-winter conditions in the second part of the month in the north, extreme dryness in the south
March	Very cold at the start, very mild at mid-month. Again little precipitation
April	Unseasonably mild overall – unusual snowfall in western Switzerland
May	Changeable, abundant sunshine particularly in the south – mid-summer conditions at end of May
June	Extremely warm, very sunny, dry in many places – mid-summer conditions from mid-month
July	Very warm and dry in the south. Changeable in the north – heavy thunderstorms at some places
August September	Unstable and wet and very little sunshine – heavy disastrous storms Warm, and dry in many places
Year overall	Warm in the low-lying areas, extremely dry in the south. Heavy intense rainfall in August

Temperature

In the second period, the number of months with above-average high temperatures dominated, as in previous years. Throughout Switzerland the months of October, May and June were excessively warm. The values in the Alps in 2005 during the radiation-intensive summer months, so important for snowmelt (May and June), and for the disappearance of the snow cover on the glacier (July to September), were about 2.4°C above average. The summer of 2005 was only slightly warmer than that of 1947 and thus occupies 2nd place behind 2003 in the ranking of extremely hot summers.

Precipitation

The period 2004/05 had less precipitation than the long-term average in the west of Switzerland, the Alps, and in Ticino, while the precipitation deficit on the south side of the Alps could even be termed extreme. In Sopraceneri and Misox this was the driest year on record since 1901 and in other regions since 1921. March, June and September were unseasonably dry throughout Switzerland, whereas in the north, April and August, and October in the south in particular, were clearly too wet. The southern regions of the Swiss Alps experienced a long period of dryness in January and February. The annual total deviates by -11.7% from the mean value for 1961 to 1990.

Sunshine duration

Above-average values for sunshine duration were recorded in the second period under review. Throughout the whole of Switzerland, only the month of July had a sunshine deficit, in contrast to the months of December, January, March, May and June with their abundant hours of sunshine. The month of August in the Alps, and September in southern regions were also sunshine deficient. The major portion of the yearly surplus was achieved in June, the month with more daylight hours. This surplus of sunshine duration was less marked at higher elevations, with the exception of Engadin.

2.3 Climate in 2003/04 and in 2004/05, Summary: deviation from the mean value 1961-1990

The regional differences and temporal variations in the important climatic elements for the mass balance of the glaciers during the two periods under review are presented on the basis of the annual precipitation and the summer air temperatures (MeteoSchweiz, 2004a, 2005a). The Figures 2.1 - 2.4 show the regional differences recorded in Switzerland while temporal variations since the begin of systematic meteorological measurements in 1864 is illustrated in Figures 2.5 and 2.6 as a mean of the 12 homogenized time series (Begert et al., 2005). Deviations from the mean values in the standard climatological period 1961-1990 are presented (Aschwanden et al., 1996; Begert et al., 2003). Data are taken from the different observational networks ANETZ, ENET, KLIMA and NIME maintained by MeteoSwiss.

Figure 2.1: Regional differences of annual precipitation 2003/04 - Deviation from the mean value 1961-1990. Deviation in percentage.

Figure 2.2: Regional differences of mean summer air temperatures in 2004 - Deviation from the mean value 1961-1990. Deviation in degree Celcius.

Figure 2.3: Regional differences of annual precipitation 2004/05 - Deviation from the mean value 1961-1990. Deviation in percentage.

Figure 2.4: Regional differences of mean summer air temperatures in 2005 - Deviation from the mean value 1961-1990. Deviation in degree Celcius.

Figure 2.5: Deviations of annual precipitation (hydrological year) from the mean value 1961-1990 in percentage for the period 1864-2005. The gray shaded area highlights the years of the current report.

Figure 2.6: Deviations of mean summer air temperature (May-September) from the mean value 1961-1990 in degree Celcius for the period 1864-2005. The gray shaded area highlights the years of the current report.

Ammertengletscher in a) 1971, b) 1985, c) 1995 and d) 2005 (Photos: Archives VAW / E. Hodel)

3 Length Variation

3.1 Introduction

Of the 121 glaciers registered in the observation network, 110 are currently being actively observed (Figures 3.1, 3.2 and Table 3.1). The other glaciers (compare Table 3.1, remark f) have melted back drastically, and are often debris-covered, on one hand, with the result that it is simply not possible to carry out a proper survey at yearly intervals. On the other hand, a number of glaciers were observed only at irregular intervals, and produced individual measurement values that were very imprecise, which certainly does not justify preserving these figures in the charts and analyses.

During the two years under review, 2003/04 and 2004/05, Swiss glaciers suffered further losses in length. Most of the measurements are within the range of 0 to -30 m for both periods. Aside from the maximum retreat values at Triftgletscher, there are only a few instances with very large length reductions. These extraordinary retreat amounts can be found in some cases over a two-year time span, some are from larger glaciers, or can be explained by local influences. In many places, measurement activities have been impeded in past years by the drastic, continued retreat of the glacier. The measurement strategy has to be changed or adapted more frequently, and in some places the glacier tongues have retreated into very steep or inaccessible terrain, requiring a much greater expenditure of time and equipment. In addition, the constantly thickening layer of debris not only hinders efforts to locate the ice margin, but a growing number of detached dead ice masses in front of the glacier are found, a result of the glacier tongue being completely cut off in a steep section of terrain. Glaciers with a stationary tongue position are generally small ones, or those with a thick layer of debris. The continuous debris cover protects the underlying ice from solar radiation and melting is reduced.

3.2 Length Variations in 2003/04

In the autumn 2004 observation period, 102 glacier tongues of the 110 glaciers under active observation were investigated, and length variations determined for 91 of them. The majority of the glaciers, or 76 in total, were in retreat, while 5 of them remained stationary (0 ± 1 m) and 8 glacier tongues increased in length. The maximum amounts recorded indicate a minor advance of a full 10 m at Morteratschgletscher, and a retreat of about 134 m at Triftgletscher.

The fact that certain glaciers advanced, as in the first observation period, can usually be explained

by local influences at the tongue. This is not a true glacier advance stemming from a mass surplus in the accumulation area, the result of cooler climate conditions with more abundant precipitation in the past. In the previous measurement period of 2002/03, a very large length retreat was determined at Morteratschgletscher in the Bernina region. In autumn 2003 a very steep front remained, which flattened out distinctly within the span of the 2003/04 measurement period. Furthermore, the tongue is partially covered with debris, which reduces the melting of the underlying ice. These factors could have had an influence on the advance figure determined just this one time.

3.3 Length Variations in 2004/05

In the autumn of 2005, thanks to good measurement conditions and favourable melt-out, 99 glacier tongues were investigated and a length change determined for 92 of them. Once again, the majority, or 85 of them, were in retreat, while 7 were stationary. The recorded maximum values indicate a 216 m retreat at Triftgletscher, followed by 66 m at Grosser Aletschgletscher.

The unusual development at Triftglescher in the Susten/Grimsel region did not come unexpectedly, as the glacier has been in strong retreat for a number of years. A lake has formed at the terminus, and the glacier tongue thinned out drastically in the meantime. The retreat process is accelerated by the combined effect of calving (floating up and breaking off of ice masses at the edges) and an increased supply of heat due to the direct contact of the glacier with the lake. During this measurement period, all but a small portion of the ice melted away in the lake. This retreat trend, which began years ago, continued also at Morteratschgletscher, where a single advance was recorded in the first measurement period.

Ct. ^b No. ^a Glacier Length variation ^c Altitude ^d Date of measurements (m) (m a.s.l.) (Day, Month) 2003/04 2004/05 2005 2004 2005 2003 Catchment area of the river Rhone (II) 1^{e,f} Rhone -11.4VS -7.52208.0 15.09. 08.08. 17.09. 2 f Mutt VS 2623 01 24.10. 20.08. -11.7-6.805.08. 3 f VS -27.0Gries -58.02412.8 23.08. 05.10. 15.09. 4 e,f Fiescher 1681 01 27.08. VS 13.10. n Х Х 5 f Grosser Aletsch VS -41.0-65.61565.3 17.09. 08.08. 15.09. VS 106 Mittelaletsch n n n n n 6 f Oberaletsch VS -3.32144 01 -5.803.09. 03.09. 02.09. 7 e,f Kaltwasser VS -2.0-0.62660 26.09. 29.09. 02.11. 10^{e,f} Schwarzberg VS 15.09. -13-192660 13.08. 07.09. 11 ^{e,f} Allalin VS 07.09. +2.8-4.52601.1 13.08. 15.09. 12 e Kessjen VS -15-132868 13.08. 07.09. 15.09. Seewjinen 173 ^e VS -8.5-212705 04.09. 07.09. 15.09. 2135 02 13 ^{e,f} Fee (Nord) VS -5.1-7.415.10. 05.10. 10.10. 14 ^f Gorner VS $^{-5}$ -172240 02.10. 02.10. 07.11. 15 ^f Zmutt VS n n n n n 16 ^f VS 14.09. Findelen -18.1-19.22491.5 08.08. 01.09. VS 17 e Ried -29.1-16.22069 10.09. 10.10. 23.10. VS 18 ^{e,f} Lang -16-24 2077 22.10. 08.09. 05.10. 19 ^f Turtmann VS -46.4-17.42270 20.09. 19.09. 25.09. 20 Brunegg (Turtmann) VS -9.6-242500 20.09. 19.09. 25.09. VS 21 Bella Tola -7.8-2.421.09. 18.09. 24.09. 22 f Zinal VS -9 -8 2040 12.10. 03.10. 25.09. 23 ^{e,f} VS 2630 02 Moming n n n n n 24 ^{e,f} Moirv VS -24.52410 04.10. 18.09. +513.10. 25^{e,f} Ferpècle VS -38 -2 16.10. 02.10. 08.10. 26 e Mont Miné VS -2902.10. 08.10. -3614.09. 27 f Arolla (Mont Collon) VS -26 -28 01.10. 14.09. 08.10. 28 e,f Tsidjiore Nouve VS -45 -2214.09. 01.10. 08.10. 29 ^{e,f} Cheillon VS -21.6^{2a} -14.52689 08.09. 18.10. n 30^{e,f} En Darrey VS -7.3-28.52445 10.10. 08.09. 16.10. 31 e,f Grand Désert VS -6.4-5.218.09. 23.09. 19.09. 32^{e,f} Mont Fort (Tortin) VS -23.420.09. -1.422.09. 23.09. 33 f Tsanfleuron VS -19-37.503.09. 09.10. 03.10. 34 ^e Otemma VS -19.1-41.530.09. 25.09. 16.09. 2460 Mont Durand VS +1.401.10. 35 ^e -36.42340 14.09. 25.08.

3.4 Length Variations in 2003/04 and in 2004/05, Summary

The Swiss Glaciers 2003/04 and 2004/05

No. ^a	Glacier	Ct. ^b	Length v	ariation ^c	Altitude ^d	Date o	f measur	rements
			(n 2003/04	ו) 2004/05	(m a.s.l.) 2005	(Ľ 2003	ay, Mon ⁻ 2004	th) 2005
36 ^e	Brenev	VS	-31.5	-17.4	2575	15.09.	29.09.	24.09.
37	Giétro	VS	-34.8	-58.1	2596.6	02.08.	01.09.	14.09.
38	Corbassière	VS	-54.0	-27.0	2218.5	02.08.	01.09.	14.09.
39 ^{e,f}	Valsorev	VS	n	-27^{2a}	2399.2	08.10.	n	14.10.
40 e	Tseudet	VS	n	-54 ^{2a}	2463.8	08.10.	n	14.10.
41 ^e	Boveyre	VS	n	-24 ^{2a}	2620.4	18.10.	n	21.11.
42 ^f	Saleina	VS	-17	-8	1788.4	01.10.	18.11.	19.08.
43 ^{e,f}	Trient	VS	-19	-35	2030	22.09.	11.09.	24.09.
44 ^{e,f}	Paneyrosse	VD	-1	Х		27.08.	19.09.	08.09.
45 ^{e,f}	Grand Plan Névé	VD	-1.6	+0.1		27.08.	23.09.	01.09.
47 ^{e,f}	Sex Rouge	VD	+3.1	-5.5		16.09.	04.09.	24.09.
48 ^e	Prapio	VD	Х	-15.5 ^{2a}	2525 ⁰³	09.08.	30.07.	22.09.
Catch	ment area of the rive	Aare	(la)					
50 ^f	Oberaar	BE	-29.8 ^{3a}	-3.8	2301.8	n	01.09.	05.08.
51 ^f	Unteraar	BE	-158.6 ^{3a}	-32.7	1927.6	n	01.09.	05.08.
52	Gauli	BE	-5	-1	2110	15.09.	10.09.	23.09.
53 ^{e,f}	Stein	BE	-32	-52	1945	19.09.	08.09.	16.09.
54 ^e	Steinlimmi	BE	-8	-59.5	2100	19.09.	08.09.	16.09.
55 ^{e,f}	Trift (Gadmen)	BE	-135.7	-215.8	1651.5	04.09.	28.07.	14.09.
57 ^{e,f}	Oberer Grindelwald	BE	Х	Х		n	23.10.	22.10.
58 ^f	Unterer Grindelwald	BE	Х	Х		n	23.10.	22.10.
59 ^e	Eiger	BE	-11.9	-12.0	2202	18.09.	04.10.	15.09.
60 ^e	Tschingel	BE	-1.7	-3.2	2269	19.09.	23.09.	16.09.
61 ^{e,f}	Gamchi	BE	-15	-16.6	1950 ⁰⁴	28.09.	05.09.	08.10.
109 ^e	Alpetli (Kanderfirn)	BE	-10.8	-16.3	2250	22.09.	08.09.	15.09.
62 ^{e,f}	Schwarz	VS	-20	-25.7	2267	12.09.	10.09.	29.09.
63 ^e	Lämmern	VS	-14.6	-13.7	2540	13.09.	11.09.	30.09.
64 ^{e,f}	Blüemlisalp	BE	-18.9	-40.4	2250	25.09.	14.09.	13.09.
111 ^e	Ammerten	BE	-0.6	-0.3	2350	14.09.	05.09.	04.09.
65 ^f	Rätzli	BE	n	n	2450 ⁰¹	n	n	n
112	Dungel	ΒE	-1	-6	2608	07.09.	10.09.	15.09.
113	Gelten	BE	х	Х		22.09.	11.09.	16.09.
Catch	ment area of the rive	Reuss	(lb)					
66 ^{e,f}	Tiefen	UR	-6.8	-19.8	2520	14.09.	18.09.	21.09.
67 ^{e,f}	Sankt Anna	UR	-7.8	n	2580 ⁰⁴	26.09.	12.10.	n
68 ^{e,f}	Kehlen	UR	-20.5	-21.3	2200	25.09.	05.10.	11.10.
69 ^e	Rotfirn (Nord)	UR	-1.0	-16.7	2035	25.09.	05.10.	11.10.

No. ^a Glacier	Ct. ^b	Length v	ariation ^c	Altitude ^d	Date o	f measur	ements
		(r 2003/04	n) 2004/05	(m a.s.l.) 2005	(Ľ 2003	ay, Mon ⁻ 2004	th) 2005
70 ^{e,f} Damma	UR	×	n	2085 ⁰³	15 10	06 10	n
71 ^{e,f} Wallenbur	UR	-6.6	-12	2000	18.10.	13 10	16 10
72 ^f Brunni	UR	n	n	2560 ⁰³	n	n	n 10.10.
73 ^{e,f} Hüfi	UR	_34	_4	1700	19 09	18.09	13 10
74 ^{e,f} Griess	UR	+2.2	-9.2	2223	18.09	05.10	12.10.
75 ^f Firnalneli (Ost)		-36.2	_13.0	2172	14.08	10.00	16.00
76 ^f Griessen	OW	-6.3	-5.5	2515	22.08.	13.09.	15.09.
.		,	(-)				
Catchment area of the river	r Linth	/ Limmat	(lc)				
77 ^{e,†} Biferten	GL	-1.8	-10.5	1960.7	18.10.	11.09.	15.10.
78 ^e Limmern	GL	-1.7	-3.4	2290	06.09.	08.09.	16.10.
114 ^e Plattalva	GL	-2.9	-19.6	2580	06.09.	09.09.	17.10.
79 ^{e,f} Sulz	GL	+1.5	+0.5	1789	03.10.	01.10.	24.10.
80 ^{e,f} Glärnisch	GL	-16.2	-3.1	2330.1	02.08.	22.09.	24.09.
81 ^{e,f} Pizol	SG	+9.7	-10.8	2600	04.09.	07.09.	07.09.
Catchment area of the river	, Phine	/ Lake Cr	onstance (I	IA)			
		251 11a		2428	n	02.00	30.08
$OZ \sim LdVdZ$		-554	-1.2	2420	II 00 11	02.09.	30.00. 21.10
os ^o Pullegilas		-4.0 27.1	-10.0	2350	12.00	04.11.	21.10.
84 ^{c,r} Lenta	GR	-37.1	-21	2300	12.08.	21.09.	15.00
85 ^{°,} Vorab	GR	X	-27.4 24	0.000	14.08.	31.08.	15.09.
86 ^{c,} Paradies	GR	-0.1	-0.8	2688	04.09.	17.09.	12.09.
87 ^e Suretta	GR	-58.5	-54.6	2227	14.08.	29.09.	21.09.
88 ^{e,f} Porchabella	GR	-11	-19.8	2645	20.08.	25.08.	08.09.
115 ^e Scaletta	GR	-3.1	-3.3	2580 ⁰³	05.09.	02.09.	05.09.
89 ^{e,f} Verstankla	GR	-3.3	-14.7	2405	26.08.	25.08.	06.09.
90 Silvretta	GR	-5.8	-15.9	2465.7	13.08	05.10.	15.09
91 ^{e,f} Sardona	SG	-1.4	-7.2	2450	28.08.	06.09.	27.09.
.							
Catchment area of the river	r Inn (\	/)	 _ =	01.00	00.15	0.0.1.5	
92 ^{e,1} Roseg	GR	-53.7	-55.5	2160	28.10.	06.10.	18.10.
93 ^e Tschierva	GR	-34.0	-34.3	2340	28.10.	06.10.	18.10.
94 ^{e,†} Morteratsch	GR	+10.3	-22.2	2085	25.10.	06.10.	19.10.
95 ^e Calderas	GR	-12.4	-11.2	2745	26.08.	23.08.	15.09.
96 ^{e,f} Tiatscha	GR	Х	Х	2650	27.08.	06.10.	03.11.
97 ^e Sesvenna	GR	-6.8	n	2735 ⁰⁴	19.10.	26.08.	n
98 ^{e,f} Lischana	GR	-4.2	-3.9	2800	01.09.	02.09.	23.09.
Catchment area of the river	chhA r	(\mathbf{IV})					
99^{e} Cambrena	GR	6	_0 7	2520	20.08	03 11	11 08
100 ^{e,f} Palii	GR	_66 ^{2a}	-9.1 n	2520 2610 ⁰⁴	∠0.00. n	00.11. N8 N0	11.00. n
101° Davadicina (Compa)		-00 25	04	2040 °	1/ 00	00.09.	11 07 10
102 ef Forme		-30	- <u>2</u> 4	2030 2020 ⁰²	14.00. DE 00		∠1.1U. 06.00
	GK	-23.0	-43.ŏ	ZZ3Z °-	∠0.Uŏ.	∠0.Uŏ.	00.09.

The Swiss Glaciers 2003/04 and 2004/05

No. ^a	Glacier	Ct. ^b	Length variation ^c		Altitude ^d	Date of measurements		ements
			(r	(m)		(D	(Day, Month)	
			2003/04	2004/05	2005	2003	2004	2005
Catch	ment area of the river	Ticino) (III)					
103 ^{e,f}	Bresciana	ΤI	-76.8	-1.8	2910	17.09.	22.09.	31.08.
104 ^{e,f}	Basòdino	ΤI	-4.7	-14.9	2539.0	26.09.	07.09.	13.09.
105 ^{e,f}	Rossboden	VS	Х	n	1915 ⁰²	n	01.10.	n
117 ^e	Valleggia	ΤI	-1.2	-4.4	2426	02.09.	09.09.	15.09.
118 ^e	Val Torta	ΤI	-0.1	0	2512.0	03.09.	09.09.	15.09.
119 ^e	Cavagnoli	ΤI	-4.2	-14.9	2521.9	25.09.	08.09.	14.09.
120 ^e	Corno	ΤI	+0.1	-3.8	2570	05.09.	01.09.	30.08.
352 ^e	Croslina	ΤI	-1.4	-3.2	2704.0	19.09.	21.09.	01.09.

Legend

+	advancing	Х	value not determined
st	stationary, ± 1 m	n	not observed
-	retreating	sn	snowed in

- a Identification number of the glacier in the observation network.
- b If a specific glacier is situated in more than one canton, the canton indicated in the table is the one where the observed glacier tongue lies.
- c If the value given relates to more than one year, the number of years is indicated as follows: $-23^{4a} = Decrease$ of 23 meters within 4 years.
- d If the altitude of the glacier tongue is not measured in 2005, the year of the last measurement is indicated: $2522^{99} = 2522$ m above sea level, measured in the year 1999.
- e Compare Appendix B: Remarks on individual glaciers.
- f Glacier with nearly complete data series since the beginning of the measurements at the end of the 19th century and one of the 73 glaciers selected in Figures 3.3 and 3.4.

Table 3.1 no longer includes a) glaciers which have melted back drastically and are often debriscovered, making it impossible to carry out a proper survey at yearly intervals (Mittelaletsch, Tälliboden, Ofental, Zmutt), and b) glaciers observed only at irregular intervals and/or that yield imprecise measurement values, which does not justify retaining these figures in the charts and analyses (Bis, Orny, Martinets, Pierredar, Rosenlaui, Lötschberg, Albigna).

Figure 3.1: Observed glaciers in fall 2004.

Figure 3.2: Observed glaciers in fall 2005.

Tiefengletscher in a) 1975, b) 1990, c) 1999 and d) 2005 (Photos: J. Marx / Amt für Forst und Jagd, UR)

3.5 Length Variations - Statistics for 1880-2005

The long-term development of glaciers in Switzerland is illustrated by taking a selected sample from the Swiss glacier network (Figures 3.3 and 3.4), and the cumulative glacier length variations which have been classified according to length (Figures 3.5 - 3.8).

The dynamic response to climatic forcing of glaciers with variable geometry involves striking differences in the recorded curves (Figures 3.4 and 3.5 - 3.8) (Hoelzle et al., 2003). Such differences reflect the considerable effects of size-dependent filtering, smoothing, and enhancing of the delayed tongue response with respect to the undelayed input (mass balance) signal. As a consequence, the still-popular straight averaging of annual length-change data presented here as annual percentages of advancing and retreating glaciers obscures essential aspects of the observed signal and should be interpreted carefully.

In order to avoid having a glacier sample whose scope changes annually, not all glaciers were included in Figures 3.3 and 3.4. 73 glaciers were selected as a sample with nearly complete series since the beginning of the measurements at the end of the 19th century. In Chapter 3.4, these 73 glaciers are indicated by a footnote f. The glaciers are assigned to three classes: advancing, stationary and retreating. The sample is dominated by medium-sized glaciers (length between 1 to 5 km). The typical response time of these glaciers is in the order of decades, and the periods of advance, such as those in the 1920s and the 1980s, can be seen clearly. For the purpose of intercomparison, values of cumulative length change are presented with respect to size categories chosen in a way to optimally reflect common characteristics of the tongue-reaction signal. Figure 3.4 shows the

Figure 3.3: Yearly classification of glacier length behaviour (advancing, stationary and retreating) of 73 selected glaciers.

annual and individual length change of all 73 selected glaciers. It is well recognized that large glaciers, such as Grosser Aletschgletscher, show continuous retreat since 1880, in contrast to the smaller glaciers such as Pizolgletscher, with its highly variable behaviour.

Figure 3.4: Individual yearly pattern of the same 73 selected glaciers (displayed in the descending order of glacier length).

Figure 3.5: Large valley glaciers with a length of more than 10 km. The gray shaded area highlights the years of the current report.

Figure 3.6: Mountain glaciers with a length of 5 - < 10 km. The gray shaded area highlights the years of the current report.

Figure 3.7: Small mountain glaciers with a length of 1 - < 5 km. The gray shaded area highlights the years of the current report.

Figure 3.8: Very small circue glaciers with a length of less than 1 km. The gray shaded area highlights the years of the current report.

Glacier d'Otemma in 2004 (top) and Silvrettagletscher in 2005 (bottom) (Photos: J.-J. Chabloz and A. Bauder)
4 Mass Balance

4.1 Introduction, cumulative mean specific mass balances

Detailed mass balance data were collected using the glaciological method for Griesgletscher, Silvrettagletscher and Ghiacciaio del Basòdino in Switzerland. In addition to these investigations aiming at the determination of the glacier-wide mass balance distribution, individual point measurements of mass balance were taken at Jungfraufirn (Grosser Aletschgletscher), Claridenfirn, Glacier du Giétro and Glacier de Corbassière (cf. Chapter 5), as well as in the Mattmark region (Allalin, Schwarzberg, Chapter 5) (Figure 4.1).

The mass balance measurements at stakes, in snow pits and extensive snow probing on Griesgletscher and Silvrettagletscher were used to calculate the mean specific winter and net balance

Figure 4.1: Investigated glaciers for mass balance with the focus on spatial distribution and analysis of mean specific winter and net balance (dark blue) or point measurements (light blue).

Figure 4.2: Cumulative mean specific net balance over the whole observation period for the glaciers Silvretta, Basòdino and Gries. The gray shaded area highlights the years of the current report.

following the methods described in Huss et al. (2009). The procedure of mass balance determination includes two steps:

- (1) Winter and net balance based on the direct observations for the periods defined by the exact dates of the in-situ measurements which are reported for the years of the current report are analysed and extrapolated.
- (2) A periodical final reanalysis and homogenisation for comparable fixed date periods of the hydrological year with independently derived ice volume changes is reported separately in five to ten year intervals after evaluation (cf. Chapter 4.9).

For Ghiacciaio del Basòdino traditional hand-contouring has been applied (e.g. Østrem and Brugman, 1991). The cumulative mean specific winter and net balances of the three glaciers with extensive observation series are presented in Table 4.1. The long-term trends are very well recognizable (Figure 4.2). Notably, the accelerated mass loss since the mid-1980s is remarkable, as is the balanced conditions recorded in the 1960s and 70s. The point measurements of the mass balance are of particular significance with regard to answering questions related to climate change (Ohmura et al., 2007; Huss and Bauder, 2009). The four existing long-term time series all start in the 1910s and cover almost the entire 20th century.

Ghiacciaio del Basòdino, Griesgletscher and Silvrettagletscher are currently part of the international observation network, together with approximately other 50 glaciers (Dyurgerov and Meier, 2005; WGMS, 2007).

Glacier	No.	period	area (km²)	b _w (mm w.e.)	b _n (mm w.e.)	ELA (m a.s.l.)	AAR (%)
Basòdino	104	2003/04	2.280 ^a	1702	-490	2950	33
		2004/05	2.280 ^a	1369	-1172	3100	5
Gries	3	2003/04	5.167 ^b	1315	-1147	3267	3
		2004/05	5.133 ^b	1166	-1456	3325	1
Silvretta	90	2003/04	2.837 ^b	1529	-249	2807	46
		2004/05	2.824 ^b	1327	-929	2857	34

Table 4.1: Summary table with area, mean specific winter and net balance, ELA and AAR for the exact measuring periods 2003/04 and 2004/05.

a Measured in 2002.

b Measured in 2003 and adjusted for area loss since then.

4.2 Mass Balance in 2003/04

In the first measurement period, the Griesgletscher in the Nufenen region and the neighbouring Ghiacciaio del Basòdino in northern Ticino experienced substantial mass losses, while the Silvret-tagletscher in the upper part of Prättigau had only a slight loss. The values of the mean specific mass balance in water equivalent amounted to -0.49 m at Basòdino, -1.15 m at Gries and -0.25 m at Silvretta.

In this measurement period with its average snow amounts in the Alps, the above-average warm summer temperatures had a corresponding impact on the glaciers. After the extreme mass losses of the previous 2002/03 period due to the extremely hot summer of 2003, the measurements from the 2003/04 period once again showed evidence of the regional differences so often observed before. Griesgletscher continued the trend to mass losses, in some places drastic ones, while at Ghiacciaio del Basòdino the mass loss is once again rather weak. In the past ten years, Silvrettagletscher often had a less negative or even a positive mass balance, likely due to snowfalls on the northern slopes of the Alps which frequently extended down to lower elevations in the course of summer.

4.3 Mass Balance in 2004/05

The Gries, Basòdino and Silvretta glaciers experienced mass losses in the second measurement period as well. The values of the mean specific mass balance in water equivalent amounted to -1.17 m at Basòdino, -1.46 m at Gries and -0.93 m at Silvretta.

The mass losses recorded in this observation period rank third after 2003 and 1998 for mass losses in the past 10 years. This result is due more likely to the minimal winter precipitation and less likely to summertime melting, in contrast to the 2003 result. The minimal snow depths at the end of winter, and the warm temperature conditions in May and June very much enhanced the fast progress of melt-out. The variable conditions and the overall better situation for the glacier in July could do little to change this. The summer was distinctly too warm, in spite of being less

The Swiss Glaciers 2003/04 and 2004/05

radiation-intensive. This evolution underlines the crucial factors in the course of the season: the winter snow cover is significant in that it is able to reflect a great deal of radiation and thus to protect the covering layers of old snow and ice. Therefore, the conditions in early spring during melt-out are more decisive than the amount of snow that built up during the winter. Variable weather conditions are not enough, as long as the temperature conditions permit complete melt out to higher elevations. In order for the mass balance to be positive, the most important factors are late melt-out combined with a cool summer and abundant precipitation. By contrast, winters with little snow coupled with warm, radiation-intensive summers lead to major mass losses.

4.4 Ghiacciaio del Basòdino

Introduction

Ghiacciaio del Basòdino is a small north-east facing temperate glacier in the southern Swiss Alps. It covers an area of 2.2 km^2 and extends from 2530 to 3192 m a.s.l.

Figure 4.3: Surface topography and observational network of the Ghiacciaio del Basòdino.

Investigations in 2003/04

The measuring period was 22.09.2003 - 03.10.2004 with a field visit in spring on 19.05.2004. Periodical additional field visits complement the measurements with observations on the gradual seasonal evolution.

Investigations in 2004/05

The measuring period was 03.10.2004 - 16.09.2005 with a field visit in spring on 18.05.2005. Periodical additional field visits complement the measurements with observations on the gradual seasonal evolution.

Figure 4.4: Ghiacciaio del Basòdino - Mean specific net balance (bars) and cumulative net balance for the period 1991-2005.

Ghiacciaio del Basòdino in 2005 (Photo: C. Valeggia / Sezione forestale, TI)

Altitude	2003/0	4		2004/05			
	area	bw	bn	area	b _w	b	
(m a.s.l.)	(km ²)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)	
2600 - 2700	0.240	1575	-1440	0.240	1058	-2300	
2700 - 2800	0.450	1595	-960	0.450	1350	-1900	
2800 - 2900	0.550	1668	-700	0.550	1530	-1400	
2900 - 3000	0.560	1789	-90	0.560	1260	-800	
3000 - 3100	0.480	1798	200	0.480	1485	-100	
2600 - 3100	2.280	1702	-490	2.280	1369	-1172	

Table 4.2: Ghiacciaio del Basòdino - Specific winter and net balance versus altitude in the two periods 2003/04 and 2004/05 evaluated for the exact measurement period defined by the dates of field survey.

Table 4.3: Ghiacciaio del Basòdino - Individual stake measurements of winter and net balance.

stake		period		coordinates	mass balance	
	start	spring	end		b _w	b _n
				(m / m / m a.s.l.)	(mm	ı w.e.)
1	22.09.2003		03.10.2004	680509 / 141556 / 2615		-2200
2	22.09.2003	19.05.2004	03.10.2004	680336 / 141488 / 2690	1450	-1600
3	22.09.2003	19.05.2004	03.10.2004	680130 / 141456 / 2740	1570	-1600
3	03.10.2004	18.05.2005	16.09.2005	680130 / 141456 / 2740	1450	-2400
4	22.09.2003	19.05.2004	03.10.2004	680045 / 141283 / 2816	1520	-1400
4	03.10.2004	18.05.2005	16.09.2005	680045 / 141283 / 2816	1350	-2300
6	22.09.2003	19.05.2004	03.10.2004	679582 / 141364 / 2910	1900	-1300
7	22.09.2003	19.05.2004	03.10.2004	679582 / 141084 / 2975	1900	0
7	03.10.2004	18.05.2005	16.09.2005	679582 / 141084 / 2975	1500	-1200
8	22.09.2003	19.05.2004	03.10.2004	679600 / 140800 / 3050	1810	900
8	03.10.2004	18.05.2005	16.09.2005	679600 / 140800 / 3050	1500	-100
9	22.09.2003	19.05.2004	03.10.2004	680553 / 141149 / 2760	1600	-600
11a	22.09.2003		03.10.2004	681382 / 141094 / 2610		-1400
11b	22.09.2003		03.10.2004	681319 / 141060 / 2630		-1700
11b	03.10.2004		16.09.2005	681319 / 141060 / 2630		-2650

Figure 4.5: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and net (continuous line, +) balance versus altitude for 2003/04 (top) and 2004/05 (bottom). Small symbols mark the individual measurements.

Figure 4.6: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific net balance for the whole observation period.

4.5 Griesgletscher (Aegina)

Introduction

Griesgletscher is a temperate valley glacier located in the central Swiss Alps. The glacier covers an area of 5.26 km² flowing in north-east direction from 3374 m a.s.l. down to 2409 m a.s.l. Mass balance measurements started in 1961 in connection with the construction of a reservoir for hydropower production. Determination of volumetric changes in decadal resolution reach further back to 1884 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1884, 1923, 1961, 1967, 1979, 1986, 1991, 1998 and 2003.

Figure 4.7: Surface topography and observational network of the Griesgletscher.

Investigations in 2003/04

The measuring period was 20.09.2003 - 18.09.2004 with a field visit in spring on 28.04.2004. The melt out at the end of the summer extended over almost the entire surface area. Only some marginal firn patches were left.

Figure 4.8: Griesgletscher - Mean specific net balance (bars) and cumulative net balance for the period 1959-2005.

Investigations in 2004/05

The measuring period was 18.09.2004 - 15.09.2005 with a field visit in spring on 02.05.2005. The melt out at the end of the summer once again extended over almost the entire surface area. Only some marginal firn patches were left.

	-		-				
Altitude	2003/0	4	2004/05				
	area	b _w	b _n	area	b _w	b _n	
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)	
2400 - 2500	0.173	939	-3469	0.176	602	-4060	
2500 - 2600	0.766	1175	-2784	0.765	826	-3397	
2600 - 2700	0.419	1295	-2016	0.399	1016	-2579	
2700 - 2800	0.370	1456	-1160	0.364	1286	-1609	
2800 - 2900	0.605	1345	-1026	0.613	1248	-1345	
2900 - 3000	0.932	1353	-762	0.934	1269	-996	
3000 - 3100	1.461	1405	-353	1.461	1331	-478	
3100 - 3200	0.323	1213	-176	0.305	1153	-255	
3200 - 3300	0.082	1070	20	0.081	1065	42	
3300 - 3400	0.005	978	290	0.004	1038	389	
2400 - 3400	5.167	1315	-1147	5.133	1166	-1456	

Table 4.4: Griesgletscher - Specific winter and net balance versus altitude in the two periods 2003/04 and 2004/05 evaluated for the exact measurement period defined by the dates of field survey.

stake		period		coordinates	mass	balance
	start	spring	end		b _w	b _n
				(m / m / m a.s.l.)	(mm	w.e.)
01	18.09.2004		15.09.2005	667479 / 142824 / 3049		-920
02	20.09.2003	28.04.2004	18.09.2004	667607 / 142735 / 3046	1540	-90
02	18.09.2004	02.05.2005	15.09.2005	667539 / 142662 / 3045	1350	-310
03	18.09.2004		15.09.2005	667601 / 142554 / 3050		-560
04	20.09.2003		18.09.2004	668071 / 143002 / 3004		-940
05	20.09.2003		18.09.2004	668603 / 143401 / 2926		-1230
05	18.09.2004		15.09.2005	668603 / 143401 / 2925		-1490
06	20.09.2003		18.09.2004	668632 / 143302 / 2927		-1310
07	20.09.2003		18.09.2004	669399 / 143669 / 2765		-960
08	20.09.2003		18.09.2004	669308 / 144010 / 2681		-2480
08	18.09.2004		15.09.2005	669308 / 144010 / 2680		-2790
10	20.09.2003		18.09.2004	669333 / 144286 / 2637		-2370
10	18.09.2004		15.09.2005	669333 / 144286 / 2637		-2930
11	20.09.2003		18.09.2004	669400 / 144223 / 2636		-2220
11	18.09.2004		15.09.2005	669400 / 144223 / 2636		-2890
12	18.09.2004		15.09.2005	669697 / 144516 / 2598		-3170
13	20.09.2003	28.04.2004	18.09.2004	669738 / 144416 / 2594	1060	-2410
13	18.09.2004	02.05.2005	15.09.2005	669738 / 144416 / 2593	900	-3410
14	20.09.2003		18.09.2004	670186 / 144803 / 2567		-3900
15	20.09.2003		18.09.2004	670208 / 144701 / 2565		-2690
15	18.09.2004		15.09.2005	670208 / 144701 / 2564		-3470
16	20.09.2003		18.09.2004	670493 / 144954 / 2517		-3600
16	18.09.2004		15.09.2005	670493 / 144954 / 2516		-4010
17	20.09.2003		18.09.2004	670522 / 144838 / 2516		-2950
17	18.09.2004		15.09.2005	670522 / 144838 / 2516		-3430

Table 4.5: Griesgletscher - Individual stake measurements of winter and net balance.

Figure 4.9: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and net (continuous line, +) balance versus altitude for 2003/04 (top) and 2004/05 (bottom). Small symbols mark the individual measurements.

Figure 4.10: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific net balance for the whole observation period.

4.6 Silvrettagletscher

Introduction

Silvrettagletscher is a small temperate mountain glacier located in the north-eastern part of Switzerland in the Silvretta massif at the border to Austria. The present surface area is 2.8 km^2 , stretching from 3079 m a.s.l. down to 2466 m a.s.l.

First mass balance measurements date back to 1910s (Firnberichte, 1978). Seasonal observations of 2 stakes were conducted until 1959, when the number the stake network was extended up to about 40 stakes. Determination of volumetric changes in decadal resolution reach further back to 1892 (Bauder et al., 2007). There exist topographic maps and photogrammetrical surveys for 1892, 1938, 1959, 1973, 1986, 1994 and 2003.

Figure 4.11: Surface topography and observational network of the Silvrettagletscher.

Investigations in 2003/04

Snowfalls in September 2003 covered the glacier completely and in spring 2004 uniformly distributed snow cover of about 3.5 m was accumulated. The melt at the tongue did not start before July. In September 2004 a moderate mass gain of 124 mm w.e. resulted during the first period. The measuring period was 22.09.2003 - 21.09.2004 with a field visit in spring on 30.05.2004.

Investigations in 2004/05

Major snowfalls took place short after the measurements in September 2004. Snow depth between 2.5 m and 3.0 m was existing in May 2005. Melt out started between end of June and mid July 2005. The ablation season lasted till late fall and the minimum was probably reached after the measurements in September 2005. The registered mass loss at the date of the measurements was therefore less negative than at the minimum.

The measuring period was 21.09.2004 - 24.09.2005 with a field visit in spring on 15.05.2005.

Figure 4.12: Silvrettagletscher - Mean specific net balance (bars) and cumulative net balance (line) for the period 1959-2005.

Altitude	2003/0	2003/04			2004/05		
	area	b _w	b _n	area	b _w	b _n	
(m a.s.l.)	(km²)	(mm w.e.)	(mm w.e.)	(km²)	(mm w.e.)	(mm w.e.)	
2400 - 2500	0.015	711	-2859	0.018	331	-4235	
2500 - 2600	0.356	1336	-1376	0.360	788	-3068	
2600 - 2700	0.417	1351	-880	0.413	1060	-1975	
2700 - 2800	0.718	1517	-331	0.713	1330	-1091	
2800 - 2900	0.591	1680	233	0.590	1591	-90	
2900 - 3000	0.582	1651	399	0.579	1588	297	
3000 - 3100	0.144	1551	396	0.138	1412	237	
2400 - 3100	2.837	1529	-249	2.824	1327	-929	

Table 4.6: Silvrettagletscher - Specific winter and net balance versus altitude in the two periods 2003/04 and 2004/05 evaluated for the exact measurement period defined by the dates of field survey.

Table 4.7: Silvrettagletscher - Individual stake measurements of winter and net balance.

stake		period		coordinates	mass l	balance
	start	spring	end		b _w	b _n
				(m / m / m a.s.l.)	(mm	w.e.)
01	22.09.2003	30.05.2004	21.09.2004	801838 / 191730 / 2985	1663	963
01	21.09.2004	15.05.2005	24.09.2005	801841 / 191728 / 2981	1280	333
02	22.09.2003	30.05.2004	21.09.2004	801927 / 192023 / 2959	1787	583
02	21.09.2004	15.05.2005	24.09.2005	801928 / 192022 / 2956	1248	270
03	21.09.2004	15.05.2005	24.09.2005	801786 / 192292 / 2890	1768	588
04	22.09.2003	29.05.2004	21.09.2004	801754 / 192657 / 2823	1827	1109
04	21.09.2004	16.05.2005	24.09.2005	801731 / 192632 / 2820	1328	189
05	21.09.2003	29.05.2004	21.09.2004	801074 / 192689 / 2723	1696	-90
05	21.09.2004	16.05.2005	24.09.2005	801067 / 192691 / 2720	1223	-1044
06	21.09.2003	29.05.2004	21.09.2004	800515 / 192890 / 2628	1529	-837
06	21.09.2004	16.05.2005	24.09.2005	800509 / 192889 / 2625	1107	-2088
07	21.09.2003	29.05.2004	21.09.2004	800157 / 192867 / 2582	1654	-945
07	21.09.2004	16.05.2005	25.09.2005	800165 / 192869 / 2579	1112	-2250
08	21.09.2003	29.05.2004	21.09.2004	799827 / 192745 / 2539	1965	-621
08	21.09.2004	15.05.2005	25.09.2005	799823 / 192744 / 2536	1191	-2916
10	22.09.2003	30.05.2004	21.09.2004	801544 / 191797 / 2943	1753	501
10	21.09.2004	15.05.2005	24.09.2005	801489 / 191831 / 2932	1318	520
11	21.09.2003	29.05.2004	21.09.2004	800718 / 192206 / 2727	1609	-306
11	21.09.2004	15.05.2005	24.09.2005	800717 / 192207 / 2725	1254	-972
12	21.09.2003	29.05.2004	21.09.2004	800406 / 192587 / 2604	1602	-810
12	21.09.2004	15.05.2005	24.09.2005	800400 / 192588 / 2600	1223	-1773

Figure 4.13: Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and net (continuous line, +) balance versus altitude for 2003/04 (top) and 2004/05 (bottom). Small symbols mark the individual measurements.

Figure 4.14: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific net balance for the whole observation period.

4.7 Claridenfirn

Introduction

Measurements of the snow and firn accumulation and melt, as well as of precipitation values in the accumulation area of the Claridenfirn, have been undertaken by various researchers since 1914. The traditional glaciological method was applied by digging a snowpit down to the layer of ochre applied the previous autumn and measuring the water equivalents. Specific net balances were determined every autumn since 1957 and also regularly in spring at two plateau locations at altitudes of 2700 and 2900 m a.s.l. The reports dealing with the years 1914 to 1978 are published in Kasser et al. (1986). The method of measurement and the results from the period 1914-1984 are published in Müller and Kappenberger (1991).

Figure 4.15: Surface topography and observational network of the Claridenfirn.

Investigations in 2003/04

The spring measurements were taken on May 20st. Snow probing were conducted over a larger area in the vicinity of the site. Percolation of melt water down to 1 meter, below the snow was cold at -2 °C in 2 m depth, -3.9 °C in 3 m depth, -4.3 °C in 4 m depth, -3.6 °C in about 5 m depth, respectively. The fall measurements were carried out on September 18th. There was no new snow. At the lower site, the old stake originating from the 1970s, which started to melt out in summer 2002 was visible for 360 cm and located about 95 m of the its original position. No additional ablation may took place after the field visit, low temperatures and snow falls on September 22-23 (NW-Staulage) terminated the ablation period. The investigations included snow probing at both stakes, snow pit measurements in spring and fall at the upper site, stake readings and determination of the position with a small theodolite in fall. In addition to the program on the glacier two precipitation totalizators were maintained and readings taken during spring and fall visits at Claridenhütte and Geissbützistock.

Investigations in 2004/05

The spring field survey was carried out on May 15th, and the late summer survey on September 10th (Table 4.8). The depth below surface to which percolation of melt water in spring has been propagate was found just about in 3 m and below the snow was still at negative temperatures. A layer of 90 cm just above the last summer surface was identified as accumulation from fall 2004 after the field visit. No fresh snow accumulation was found during the fall visit. The old stake at lower site was not visible in spring, but melted out for 470 cm in fall now heavily tilted. The same investigations as in the previous period have been performed on the glacier and at the precipitation totalizators. Only the surveying of the stake position was limited, due to bad visibility of fog and clouds during fall visit.

stake	period		coordinates	mass balance		
	start	spring	end		b _w	b _n
				(m / m / m a.s.l.)	(mm	w.e.)
upper	17.09.2003	20.05.2004	18.09.2004	710598 / 189141 / 2900	2175	940
upper	18.09.2004	15.05.2005	10.09.2005	710598 / 189141 / 2900	1681	537
lower	17.09.2003	20.05.2004	18.09.2004	712245 / 190388 / 2700	1856	-163
lower	18.09.2004	15.05.2005	10.09.2005	712245 / 190388 / 2700	1574	-423

Table 4.8: Claridenfirn - Individual stake measurements of winter and net balance.

Figure 4.16: Mass balance (top) and cumulated deviation changes (bottom) of the lower stake on Claridenfirn over the whole observation period. The gray shaded area highlights the years of the current report.

Figure 4.17: Mass balance (top) and cumulated deviation changes (bottom) of the upper stake on Claridenfirn over the whole observation period. The gray shaded area highlights the years of the current report.

4.8 Grosser Aletsch (Jungfraufirn)

Introduction

Grosser Aletschgletscher is the largest ice mass in the Alps and borders to the main northern Alpine crest. The three main tributary merge at the Konkordiaplatz and form the common tongue which extends southwards for about 15 km. Starting in 1918, the first stake has been installed at 3350 m a.s.l. on Jungfraufirn and snow accumulation and net mass balance was measured almost continuously at P3 (Figure 4.18).

Figure 4.18: Surface topography and observational network of the Grosser Aletschgletscher.

Investigations in 2003/04

The measurements were taken in spring on April 21st and in fall on September 16th (Table 4.9). Snow probing and firn coring showed a homogeneous layer of winter accumulation without any ice layer in April. The very distinct crust of the end of summer surface of 2003 was clearly detectable. In September a thick ice lens was found in 3.5 m depth about 1 m above the horizon marking the previous summer surface.

Investigations in 2004/05

The spring field survey was carried out on May 26th, and the fall survey on October 9th (Table 4.9). A distinct horizon that corresponds to the stake readings was detected by snow probing at the end of May. In September the hard horizon detected by the snow probe was less deep than expected from the stake readings. A potential bias by melt in of the stake may blur the comparison. In spring and fall the marked horizon of the previous summer surface was not found in the firn cores sampled for the density profile.

stake	period		coordinates	mass balance		
	start	spring	end		b _w	b _n
				(m / m / m a.s.l.)	(mm	w.e.)
P3	16.09.2003	21.04.2004	16.09.2004	641825 / 154809 / 3344	1496	2730
P3	16.09.2004	26.05.2005	09.10.2005	641823 / 154808 / 3341	1981	2788

Table 4.9: Aletsch - Individual stake measurements of winter and net balance.

4.9 Homogenized time-series

The analysis of the complete mass balance data for Griesgletscher and Silvrettagletscher have been complemented with ice volume changes available (Huss et al., 2009). Homogenized time-series of mean specific winter and net balance with associated glacier area, ELA and AAR for comparable fixed date periods of the hydrological year are presented in Table 4.10 for Griesgletscher and Table 4.11 for Silvrettagletscher, respectively.

The comparison of the homogenized mass-balance time series with the previously reported values showed a general agreement for the cumulative mass balance of both glaciers. In the case of Griesgletscher, the homogenized mass-balances deviates in the order of the error band. The mass loss according of the homogenized time-series is slightly larger. However, for Silvrettagletscher a significant bias is found and corrected for since 1994. Whereas the cumulative mass loss was -3.1 m w.e. according to the previous evaluation based on the direct field observations only, the homogenized time series yields -8.0 m w.e. in the same period, resulting in a net balance bias of 4.9 m w.e. (or $0.37 \text{ m w.e. } a^{-1}$).

period	area (km^2)	b _w	b _n	ELA (mast)	AAR
	(KIII)	(IIIII W.e.)	(IIIII W.e.)	(111 a.s.1.)	(70)
1961/62	6.574	1008	-984	3272	4
1962/63	6.550	1269	-180	2822	60
1963/64	6.534	1666	-688	2912	44
1964/65	6.515	846	445	2662	70
1965/66	6.496	845	-357	2807	61
1966/67	6.422	1475	29	2757	68
1967/68	6.434	1124	379	2667	74
1968/69	6.420	1503	733	2622	80
1969/70	6.415	1471	-758	3072	23
1970/71	6.403	1449	-527	2892	45
1971/72	6.396	1283	408	2657	74
1972/73	6.388	771	-1095	3127	8
1973/74	6.379	1509	-178	2812	61
1974/75	6.372	1565	378	2722	71
1975/76	6.364	684	-1021	3052	25
1976/77	6.356	1808	1166	2522	94
1977/78	6.348	2165	1056	2617	81
1978/79	6.364	1128	-885	3087	16
1979/80	6.261	1449	570	2662	75
1980/81	6.237	952	-324	2917	54
1981/82	6.228	1205	-1304	3102	10
1982/83	6.221	1314	-779	3052	24

Table 4.10: Homogenized mass-balance time series of Griesgletscher during 1961-2005 with area, mean specific winter and net balance, ELA and AAR for fixed date periods 1 Oct - 30 Apr (b_w) and 1 Oct - 30 Sep (b_n).

The Swiss Glaciers 2003/04 and 2004/05

1983/84	6.209	875	-4	2762	61
1984/85	6.194	1070	-526	3067	19
1985/86	6.077	1767	-947	3087	11
1986/87	5.991	883	-733	3057	21
1987/88	5.963	1244	-924	3042	25
1988/89	5.929	1439	-1071	3057	20
1989/90	5.891	1167	-1988	3326	0
1990/91	5.799	1186	-1344	3057	17
1991/92	5.933	1198	-1125	3047	25
1992/93	5.879	716	-1052	3087	12
1993/94	5.822	1587	-209	2947	51
1994/95	5.781	1185	-278	2962	49
1995/96	5.755	632	-517	2992	39
1996/97	5.734	1598	-1068	3137	9
1997/98	5.767	962	-2053	3326	0
1998/99	5.324	1676	-564	2952	46
1999/00	5.314	1392	-985	3037	23
2000/01	5.309	1802	-229	2947	48
2001/02	5.302	876	-990	3047	20
2002/03	5.274	1558	-2711	3326	0
2003/04	5.167	1343	-1146	3326	2
2004/05	5.133	1142	-1512	3325	1

Table 4.11: Homogenized mass-balance time series of Silvrettagletscher during 1959-2005 with area, mean specific winter and net balance, ELA and AAR for fixed date periods 1 Oct - 30 Apr (b_w) and 1 Oct - 30 Sep (b_n).

area (km²)	b _w (mm w.e.)	b _n (mm w.e.)	ELA (m a.s.l.)	AAR (%)
3.246	808	286	2657	72
3.243	1211	203	2667	73
3.236	1334	-404	2872	30
3.229	867	-1042	3007	5
3.223	973	-1375	3084	0
3.216	1323	1280	2482	98
3.202	1338	1278	2527	96
3.191	1452	376	2662	74
3.184	1311	631	2602	83
3.178	769	-175	2797	45
3.174	1286	145	2697	72
3.172	944	-758	3027	9
3.171	424	-259	2912	36
3.147	969	-1102	3022	6
3.121	1055	763	2557	95
3.121	1089	322	2612	82
3.122	820	-218	2757	49
	area (km ²) 3.246 3.243 3.236 3.229 3.223 3.216 3.202 3.191 3.184 3.178 3.174 3.172 3.171 3.171 3.147 3.121 3.121 3.121 3.122	area (km^2) b_w $(mm w.e.)$ 3.2468083.24312113.23613343.2298673.2239733.21613233.20213383.19114523.18413113.1787693.17412863.1714243.1479693.12110553.12110893.122820	area (km^2) b_w b_n $(mm w.e.)$ 3.2468082863.24312112033.2361334-4043.229867-10423.223973-13753.216132312803.202133812783.19114523763.18413116313.178769-1753.17412861453.172944-7583.171424-2593.147969-11023.12110557633.12110893223.122820-218	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1976/77	3.123	1191	422	2677	75
1977/78	3.125	1137	887	2562	94
1978/79	3.125	913	-149	2762	46
1979/80	3.126	1406	735	2567	93
1980/81	3.127	1395	479	2657	77
1981/82	3.127	1276	-697	3042	10
1982/83	3.129	1097	-487	2772	37
1983/84	3.129	1011	717	2647	83
1984/85	3.131	1041	207	2712	68
1985/86	3.137	1075	-367	2942	34
1986/87	3.109	484	-944	3091	2
1987/88	3.099	1047	-413	2827	32
1988/89	3.094	917	-393	2907	31
1989/90	3.080	1121	-709	3047	19
1990/91	3.069	870	-1238	3037	6
1991/92	3.049	1883	-1144	2987	11
1992/93	3.036	1781	-244	2817	43
1993/94	3.007	1609	-708	2862	33
1994/95	2.975	1213	-129	2797	46
1995/96	2.968	471	-143	2777	46
1996/97	2.961	1500	-263	2792	43
1997/98	2.957	607	-1591	3076	0
1998/99	2.953	2073	-196	2782	45
1999/00	2.949	1752	12	2727	63
2000/01	2.940	1587	673	2682	71
2001/02	2.935	1189	-298	2757	57
2002/03	2.889	1140	-2529	3073	0
2003/04	2.837	1396	-120	2757	53
2004/05	2.824	1101	-1050	2877	26

Tongue of Unteraargletscher in 2005 (Photo: M. Funk)

5 Velocity

5.1 Introduction

On some specific glaciers (Figure 5.1) long-term investigations are carried out with measurements of the ice flow velocity. The VAW/ETHZ has been under contract by the two hydro-electric power companies Kraftwerke Mattmark and Force Motrice de Mauvoisin SA to survey the glaciers in the operated catchments. The main objective of this research assignment is to observe the flow conditions of the glaciers, particularly with regard to their potential threat to the buildings and operation of the power station in the valley. The observations are mainly focused on the two glaciers Giétro and Corbassière in the Mauvoisin area (Val de Bagnes) and the two glaciers Allalin and Schwarzberg in the Mattmark area (Saastal).

From 1924 until 1998 the ablation areas of the Aaregletscher (Figure 5.6) were geodetically measured and reported each year by the Flotron AG geodetic surveying firm on behalf of the Oberhasli

Figure 5.1: Investigated glaciers for velocity measurements.

The Swiss Glaciers 2003/04 and 2004/05

hydro-electric power company (KWO). Starting in 1998, investigations are carried out only once in a 5-year period. Detailed information with annual movement values for 2004/05 and ice volume change for 2001-05 in the ablation area for the two glaciers Oberaar and Unteraar, is contained in the reports on the measurement of the Aaregletscher (Flotron, 2007). The results are provided in the present report (Tables 5.4 and 5.3).

5.2 Glacier du Giétro

Introduction

One of the longest measurement series in existence, for Glacier du Giétro (Figure 5.2) in Val de Bagnes (Valais), is being continued under contract of the Force Motrice de Mauvoisin SA. The aim of these annual observations is the early recognition of glacier break-off, which can endanger the dammed lake located below it. The measurements, which have been carried out for more than 30 years, include periods of glacier growth and recession (VAW, 1997, 1998; Bauder et al., 2002; Raymond et al., 2003).

Figure 5.2: Surface topography and observational network of the Glacier du Giétro.

Figure 5.3 shows the velocity mesurements at 7 stakes along the central flow line of the glacier, taken since 1966. There are 3 distinct periods: in the first (1966-1976), the velocities in the accumulation area (stakes 1, 2 and 4) are approximately 5-7 m per year, in the central region of the glacier (stake 5) about 80-95 m per year and in the tongue area (stakes 6, 8 and 10) they are in the range of 55-70 m annually. The second period (1977 to 1982) is marked by a distinct acceleration phase, in which the speeds (for example at stake 6) increase from 80 m to 120 m per

year. From the middle of the 1980s onward, the velocities decrease sharply again and in the last year have reached the lowest values measured since 1966.

Investigations in 2003/04 and in 2004/05

The field survey in late summer 2004 was carried out on September 9th. The melt out has proceeded above the firn plateau. Only at stake P2 was any snow accumulation from the winter 2003/04 left.

On August 31st 2005, the field measurements were taken in the second period. The position of the snowline was just below the lower edge of firn plateau on an altitude of about 3225 m a.s.l.

Velocity in 2003/04 and in 2004/05

The ice velocity decreased in the two periods at all stakes. A pronounced decrease was observed at the three stakes on the tongue (P6, P8, P10). There the decreasing speed results from the significant reduction of the ice thickness over the past couple years.

stake	period		coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
Ρ1	04.09.2003	09.09.2004	596143 / 92346 / 3310	-1.15	4.1
Ρ1	09.09.2004	31.08.2005	596143 / 92346 / 3310	-0.27	3.9
P2	04.09.2003	09.09.2004	596605 / 92835 / 3255	-0.90	9.6
P2	09.09.2004	31.08.2005	596605 / 92835 / 3255	-0.17	9.4
P4	04.09.2003	09.09.2004	596211 / 93400 / 3195	-2.46	15.1
P4	09.09.2004	31.08.2005	596211 / 93400 / 3195	0.11	14.8
P5	04.09.2003	09.09.2004	595615 / 94303 / 3060	-0.53	22.4
P5	09.09.2004	31.08.2005	595615 / 94303 / 3060	-0.52	21.2
P6	04.09.2003	09.09.2004	594568 / 94497 / 2830		42.4
P6	09.09.2004	31.08.2005	594568 / 94497 / 2830	-0.67	37.7
P8	04.09.2003	09.09.2004	594327 / 94268 / 2670		15.0
P8	09.09.2004	31.08.2005	594327 / 94268 / 2670	-3.06	10.2
P10	04.09.2003	09.09.2004	594270 / 94250 / 2660	-6.68	12.5
P10	09.09.2004	31.08.2005	594270 / 94250 / 2660	-5.74	7.7

Table 5.1:	Glacier du Giétro	- Individual	measurements	of	annual	flow	velocity	and	thick-
	ness change								

Figure 5.3: Annual flow velocities (top) and thickness change (bottom) of the Glacier du Giétro at all 7 stakes. The gray shaded area highlights the years of the current report.

5.3 Glacier de Corbassière

Introduction

Glacier de Corbassière (Figure 5.4) has been under observation since 1955 by taking length change measurements. This glacier was threatening the water intake of the Mauvoisin power company at the front of the tongue. In the ablation area of the glacier, two profiles made by stakes are observed annually to determine the velocities (Table 5.2). Figure 5.5 shows the annual velocities for the two profiles since 1967.

Figure 5.4: Surface topography and observational network of the Glacier du Corbassière.

Investigations in 2003/04 and in 2004/05

The field surveys were carried out on September 8th in 2004 and on September 1st in 2005, respectively. The observational network has been extended by an additional stake between the two profiles. At this location at the onset of a steeper section the velocity and thickness change was observed between 1972 and 1993.

Velocity in 2003/04 and in 2004/05

After the speed up in the period 2002/03, the general trend toward steadily decreasing ice flow velocity accompanied by a lowering of surface has been observed again. The speed up during a single period is indeed only associated to the high rates of melt water produced during the hot summer 2003.

Figure 5.5: Annual flow velocities (top) and thickness change (bottom) of the Glacier de Corbassière at two profiles with 3 stakes each and the additional stake in between. The gray shaded area highlights the years of the current report.

61

Table 5.2: Glacier de Corbassière - Individual measurements of annual flow velocity and thickness change

stake	period		coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
B2	05.09.2003	08.09.2004	589577 / 93202 / 2650	1.00	23.04
B2	08.09.2004	01.09.2005	589577 / 93202 / 2650	-1.55	15.78
B4	05.09.2003	08.09.2004	589392 / 93101 / 2650	-1.02	26.84
B4	08.09.2004	01.09.2005	589392 / 93101 / 2650	-1.76	23.23
B6	05.09.2003	08.09.2004	589230 / 93012 / 2655	-0.80	26.96
B6	08.09.2004	01.09.2005	589230 / 93012 / 2655	-2.12	23.80
R	05.09.2003	08.09.2004	589150 / 93650 / 2620	-2.57	23.52
R	08.09.2004	01.09.2005	589150 / 93650 / 2620	-3.22	19.78
A2	05.09.2003	08.09.2004	588650 / 94315 / 2475	-2.27	
A2	08.09.2004	01.09.2005	588650 / 94315 / 2475	-3.49	16.59
A4	05.09.2003	08.09.2004	588450 / 94257 / 2460	-2.95	15.38
A4	08.09.2004	01.09.2005	588450 / 94257 / 2460	-3.07	13.81
A6	05.09.2003	08.09.2004	588273 / 94207 / 2470	-2.81	6.54
A6	08.09.2004	01.09.2005	588273 / 94207 / 2470	-3.32	5.67

5.4 Aaregletscher

Introduction

Ice flow velocity and thickness change has been systematically observed along transverse profiles since the 1920s on the Unteraargletscher and later on an extended network on Oberaargletscher (Figure 5.6).

Starting in 1996, aerial photographs of the Aare glaciers were processed using digital photogrammetric analysis tools. Generation of an orthophoto mosaic and a digital elevation model (DEM) of the glacier surface are standard products, opening up new possibilities for the evaluation of glacier movements. Digital elevation models have been further refined since 1997, allowing even more detailed representations of local ablation and accumulation to be made.

The use of digital photogrammetry has made it possible to improve the spatial resolution of the DEM drastically. The grid size of the measured points is 7 m enhanced by additional breaklines (terrain edges). Using the method of simultaneous mono-plotting (Kääb, 1996), horizontal displacement is determined with an estimated accuracy of 0.3 m along the 17 profiles (Figure 5.7).

Figure 5.6: Outline and observational network of the Aaregletscher.

Investigations on ice flow velocities

Aerial photographs have been acquired on 1.9.2004 and 5.8.2005. The observation period for the determination of the movement is 338 days. In accordance of a continued decrease in thickness, the flow velocities have also steadily decreased (Figure 5.7, Table 5.4).

Figure 5.7: Annual ice flow velocities (top) and thickness change (bottom) of the Aaregletscher at five selected transverse profiles since 1924. The gray shaded area highlights the years of the current report.
Investigations of thickness change

The observation period of 1444 days spans the interval since the previous report in fall 2001. The reduction in glacier size in the terminus areas goes along with a mean thickness decrease in all the analysed profiles (Figure 5.7, Table 5.4) and an ice volume loss (Table 5.3) in all sections. These changes can be observed clearly with the aid of ortho-photos, contour line maps and cross-sectional profiles. The mean lowering of the Unteraargletscher and the Oberaargletscher amounts to 7.3 m and 8.8 m respectively, relating to the investigated surface area of 13.71 km², and 1.53 km², which corresponds to a loss in volume of 99.7 million m³ and 13.5 million m³, respectively (Table 5.3). The four-year interval of observed over the entire four-year interval is about 170% of the record annual change of 1997/98.

section	area change (m ²)	volume change (m ³)		section	area change (m²)	volume change (m ³)
Unteraar				Oberaar		
Z - 2	65'027	-1'925'276		Z - 15	13'402	-3'485'104
2 - 3		-9'128'832		15 - 16		-5′435′857
3 - 4		-8'874'736		16 - 17		-4′584′538
4 - 5		-12'422'981	•			
5 - 6		-12'507'602				
6 - 7/10		-17'413'545	-			
Lauteraar				Unteraar		-62'272'972
7 - 8		-11'610'382		Lauteraar		-20'645'629
8 - 9		-9'035'247		Finsteraar		-16'798'706
Finsteraar				Oberaar		-13'505'499
10 - 11		-9'542'728		total		-133'322'806
11 - 12/13	3	-7'255'978	•			

Table 5.3:	Aaregletscher -	Change	of area	and volume	in the	period	2001 -	- 2005
------------	-----------------	--------	---------	------------	--------	--------	--------	--------

profile	per	riod	coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
1	22.08.2001	01.09.2004	662670 / 157590 / 1932	-0.31	
	01.09.2004	05.08.2005		-0.09	0.4
2	22.08.2001	01.09.2004	662085 / 157605 / 1983	-7.24	
	01.09.2004	05.08.2005		-2.16	1.7
3	22.08.2001	01.09.2004	661020 / 157500 / 2089	-6.62	
	01.09.2004	05.08.2005		-1.98	11.1
4	22.08.2001	01.09.2004	659990 / 157335 / 2180	-6.31	
	01.09.2004	05.08.2005		-1.89	15.2
5	22.08.2001	01.09.2004	658845 / 157710 / 2252	-6.78	
	01.09.2004	05.08.2005		-2.02	18.9
6	22.08.2001	01.09.2004	657690 / 157815 / 2328	-6.85	
	01.09.2004	05.08.2005		-2.05	25.0
7	22.08.2001	01.09.2004	656655 / 158385 / 2399	-6.01	
	01.09.2004	05.08.2005		-1.79	22.5
8	22.08.2001	01.09.2004	655670 / 159405 / 2488	-5.31	
	01.09.2004	05.08.2005		-1.59	27.3
9	22.08.2001	01.09.2004	654770 / 160440 / 2621	-4.62	
	01.09.2004	05.08.2005		-1.38	
10	22.08.2001	01.09.2004	656780 / 156650 / 2420	-5.08	
	01.09.2004	05.08.2005		-1.52	26.9
11	22.08.2001	01.09.2004	655635 / 155730 / 2533	-3.70	
	01.09.2004	05.08.2005		-1.10	36.0
12	22.08.2001	01.09.2004	654620 / 155735 / 2602	-4.16	
	01.09.2004	05.08.2005		-1.24	17.7
13	22.08.2001	01.09.2004	654740 / 155060 / 2632	-5.16	
	01.09.2004	05.08.2005		-1.54	
14	22.08.2001	01.09.2004	661120 / 154475 / 2332	-1.54	
	01.09.2004	05.08.2005		-0.46	2.1
15	22.08.2001	01.09.2004	660420 / 154215 / 2453	-6.31	
	01.09.2004	05.08.2005		-1.89	4.1
16	22.08.2001	01.09.2004	659610 / 153930 / 2531	-6.85	
	01.09.2004	05.08.2005		-2.05	8.9
17	22.08.2001	01.09.2004	658850 / 153710 / 2653	-4.39	
	01.09.2004	05.08.2005		-1.31	19.8

Table 5.4: Aaregletscher - Individual measurements of annual flow velocity and thickness change

5.5 Mattmark

Introduction

First ice flow velocity and mass balance measurements in the Mattmark area date back to 1955 (VAW, 1999; Antoni, 2005). Investigations were carried out with a network of up to 22 stakes on the glaciers Allalin, Hohlaub, Kessjen, Schwarzberg and Tälliboden. Currently, a measurements are continued on 10 selected stakes as part of the investigations by VAW/ETHZ for the Mattmark hydro-power company (Figure 5.8).

Figure 5.8: Surface topography and observational network of the Mattmark glaciers.

Investigations in 2003/04

The measurements on Schwarzberggletscher and of the stakes along the profile on the tongue of Allalingletscher were taken on September 17th 2004. The three other stakes on Hohlaubgletscher

and upper section of Allalingletscher have not been surveyed due to bad weather and only mass change was evaluated. Results of the horizontal flow velocity and thickness change are given in Tables 5.5 and 5.7.

Figure 5.9: Annual flow velocities (top) and thickness change (below) of the Allalingletscher at 5 stakes. The gray shaded area highlights the years of the current report.

Investigations in 2004/05

The field survey was carried out on September 14th on Schwarzberggletscher and of the stakes along the profile on the tongue of Allalingletscher and on September 15th 2005 of the stakes in the

upper section of Allalingletscher an on Hohlaubgletscher, respectively. Results of the horizontal flow velocity and thickness change are presented in Tables 5.5, 5.6 and 5.7.

stake	period		coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
101	17.09.2003	17.09.2004	638400 / 99360 / 2850	-1.06	25.13
101	17.09.2004	14.09.2005	638400 / 99360 / 2850	-1.93	27.74
102	17.09.2003	17.09.2004	638350 / 99480 / 2850	-1.31	30.23
102	17.09.2004	14.09.2005	638350 / 99480 / 2850	-2.56	29.57
103	17.09.2003	17.09.2004	638325 / 99575 / 2855	-1.60	31.29
104	17.09.2003	17.09.2004	638290 / 99665 / 2865	-1.45	31.90
104	17.09.2004	14.09.2005	638290 / 99665 / 2865	-2.16	29.22
105	17.09.2003	17.09.2004	638260 / 99755 / 2885	-1.58	31.05
105	17.09.2004	14.09.2005	638260 / 99755 / 2885	-2.46	29.41
106	17.09.2004	14.09.2005	637095 / 97810 / 3375	1.54	3.38

Table 5.5: Allalin - Individual measurements of annual flow velocity and thickness change

Table 5.6: Hohlaub - Individual measurements of annual flow velocity and thickness change

stake	per	iod	coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
110	18.09.2003	15.09.2005	637405		13.42

Table 5.7: Schwarzberg - Individual measurements of annual flow velocity and thickness change

stake	period		coordinates	thickness change	velocity
	start	end	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
120	17.09.2003	17.09.2004	638320 / 96220 / 2880	-1.30	11.92
120	17.09.2004	14.09.2005	638320 / 96220 / 2880	-2.43	11.66
123	17.09.2003	17.09.2004	638525 / 96730 / 2805	-1.82	10.36
123	17.09.2004	14.09.2005	638525 / 96730 / 2805	-2.88	9.90

Allalingletscher in 2004 where the ice flow is measured along a cross-profile on the plateau in the foreground and at two locations in the accumulation area (Photo: M. Funk)

6 Englacial Temperature

6.1 Introduction

At the end of the 19th century and into the beginning of the 20th century, Vallot (1893, 1913) observed in the Mont Blanc area that cold firn on high altitude mountain tops is widespread. In the 1950's observations of cold firn and ice have been reported from the Monte Rosa area (Fisher, 1953, 1954, 1955, 1963) and the Jungfrau area (Haefeli and Brentani, 1955). Lliboutry et al. (1976) and Haeberli (1976) were the first who systematically investigated the distribution of cold ice and firn in the Alps.

Figure 6.1: Investigated site for englacial temperatures.

In the last 20 years, research activities have started to increase in the cold high-mountain accumulation areas in the Alps, many studies have been undertaken in connection with hazards and core drillings (Alean et al., 1983; Blatter and Haeberli, 1984; Haeberli and Alean, 1985; Haeberli and Funk, 1991; Laternser, 1992; Lüthi and Funk, 1997; Lüthi, 2000; Lüthi and Funk, 2001; Oeschger et al., 1977; Suter, 2002; Suter et al., 2001, 2004; Suter and Hoelzle, 2002; Vincent et al., 1997, 2007).

The relevance of such investigations lies in the link to several related fields of study such as trace elements from ice cores, mass and energy balance, the stability of hanging glaciers and ice flow modelling. One additional objective of such firn temperature measurements is to monitor and document the influence of the current atmospheric warming on remote high-alpine sites. However, to take measurements that can be reliably interpreted, it is necessary to find suitable sites, which are not too much disturbed by flow, melt and high accumulation rates. Currently, there are two sites where such measurements have been made for a longer time. One location is the Col du Dôme in the Mont Blanc area and the other one is the Colle Gnifetti in the Monte Rosa area. Measurements of englacial temperatures have been recently added to the Swiss glacier monitoring program (see Section 1.1). The Colle Gnifetti site was selected to perform regular measurements updating the existing measurements made in the years 1983, 1991, 1999, 2000. In this report, results of measurements in the years 2003 and 2004 on Colle Gnifetti are presented.

6.2 Colle Gnifetti (Monte Rosa)

Introduction

Colle Gnifetti is a small and very wind exposed firn saddle at 4450 m asl. in the area of Monte Rosa, Valais Alps, Switzerland. The saddle is being situated between Zumsteinspitze and Signalkuppe with the famous Margerita hut and belongs to the accumulation area of Grenzgletscher a tributary of Gornergletscher. Strong wind erosion causes extraordinary low annual accumulation of snow. Alean et al. (1983) and Lüthi (2000) showed accumulation rates of 0.1 m a⁻¹ at the north-west slope of Signalkuppe to 1.2 m a⁻¹ at the sunny south slope of Zumsteinspitze. Therefore, Colle Gnifetti represents a unique Alpine key site to find long term ice core records.

Investigations

In autumn 2003, the borehole B03-1 (633847.44 / 86524.66 / 4454.51) was drilled to 82 m depth by the Paul Scherrer Institut (Böhlert, 2005; Schwerzmann, 2006). Within this campaign the Laboratory of Hydraulics, Hydrology and Glaciology at the ETH Zürich and the Department of Geography of the University of Zurich have jointly investigated the englacial temperatures in autumn 2003 (17.9.2003) and spring 2004 (15.5.2004). The temperature at a depth of around 25 m (corresponding roughly the zero annual amplitude ZAA) are around -13.5°C. At a depth of 80 m the temperature was still around -12.6°C, confirming earlier measurements and model results, which indicated that the ice is frozen to its bed around the drill site. Permafrost below is probably deep-seated, reaching thicknesses of up to 1000 meters (Lüthi, 2000; Lüthi and Funk, 2001). The comparison of temperature measurements made between 1983 and 1991 at a depth of 22 m showed no evidence of warming. Over the period 1991 to 2000 an increase of 0.5°C has been

observed (Suter, 2002). This is a clear evidence of warming during the last period of observation. However, still many uncertainties exist concerning important factors influencing the englacial temperatures such as the large basal heat flux variability (mainly influenced by the complex high mountain topography), the horizontal ice/firn advection, the unknown density changes, the accuracy and calibration of the thermistors used and the changing surface energy balance, which is strongly influenced by the local topography (radiation, wind speed, accumulation, etc). Many of these influencing factors are related to the topography and therefore strongly site specific (Suter, 2002). Repeated firn temperature records at the same location with suitable glacier geometry are useful to monitor changes of the thermal regime of such cold high altitude alpine glaciers. This is expected from such a coordinated monitoring within the Swiss Cryospheric Monitoring Network.

Figure 6.2: Englacial temperatures measured in borehole B03-1 in September 2003 and May 2004.

Table 6.1: Colle Gnifetti - Individual measurements of englacial temperatures in borehole B03-1. The results have been published by Schwerzmann (2006) and Boehlert (2005)

Date:	17.09.2003	Date: 1	15.05.2004
depth (m)	temperature (°C)	depth (m)	temperature (°C)
10	-13.563	5.2	-14.1
15	-13.513	5.4	-14.0
20	-13.539	5.8	-13.8
25	-13.507	6.2	-13.6
30	-13.408	6.6	-13.6
35	-13.376	7.0	-13.4
40	-13.305	7.5	-13.3
40	-13.350	8.0	-13.2
45	-13.290	8.5	-13.2
50	-13.199	9.0	-13.1
55	-13.135	10.0	-13.1
60	-13.042	12.0	-13.1
65	-12.954	14.0	-13.2
70	-12.882	15.0	-13.3
75	-12.769	16.0	-13.4
80	-12.640	18.0	-13.4
		20.0	-13.5
		25.0	-13.5
		30.0	-13.5
		35.0	-13.4
		15.0	-13.3
		25.0	-13.5
		35.0	-13.4
		45.0	-13.3
		55.0	-13.1
		60.0	-13.1
		65.0	-13.0
		70.0	-12.9
		72.5	-12.9
		75.0	-12.8

7 Glacier inventory

7.1 Updated glacier area from the Swiss Glacier Inventory 2000

Updated glacier area for the glaciers in the glacier observation network is provided in the Table 7.1. The recent areas have been derived from Landsat Thematic Mapper (TM) imagery as described in the previous report (Paul et al., 2008). A related update on total glaciers lengths can be found in the Volume 119/120 (Maisch, 2001). The compilation includes glacier areas from the previous inventories for the 1850 and 1973 extents (Müller et al., 1976; Maisch et al., 2000). In three cases glaciers split into individual parts between 1850 and 1973 (Grosser Aletsch / Mittelaletsch, Turtmann / Brunegg, Limmern / Plattalva). The value given for 1850 refer to the total area of both parts. For some glaciers satellite scenes from other years were used due to clouds in 1998/99 or difficulties in defining the extent. Three glaciers could not be updated due to debris cover (Sulz, Punteglias, Val Torta). For about 13 glaciers the determination of the area is uncertain. In general, the accuracy of the derived outlines should be better than 5%, but this value could be higher for debris-covered glaciers and increases towards smaller glaciers. Differences to other assessments could occur due to differently defined ice divides used for separation of individual entities (e.g. for Stein and Steinlimmi). For most of the glaciers of the observation network, the digital outlines (GIS shapefile format) can be found in the GLIMS database (www.glims.org).

No.	Glacier	1850	1973	$1998/99$ $^{\rm a}$
1	Rhone	20.19	17.60	16.06 ⁹⁸
2	Mutt	0.95	0.58	0.44 98
3	Gries	8.26	6.23	5.36 ⁹⁸
4	Fiescher	37.37	34.21	31.17 ⁹⁸
5	Grosser Aletsch	105.62	87.80	81.69 ⁹⁸
6	Oberaletsch	26.56	22.81	19.12 ⁹⁸
7	Kaltwasser	3.31	1.95	1.71 ⁹⁸
8	Tälliboden	0.57	0.26	0.15 ⁹⁷
9	Ofental	0.95	0.39	0.13 ⁹⁷
10	Schwarzberg	7.77	6.09	5.23 ⁹⁸

Table 7.1: Compilation of the area in (km²) of glaciers in the observational network for existing inventories 1850, 1973 and 1998/99.

11	Allalin	10.88	9.87	9.30 ⁹⁸
12	Kessjen	0.99	0.58	0.32 97
13	Fee (Nord)	8.05	7.46	7.68 ⁹⁸
14	Gorner	65.98	59.73	55.54 ⁹⁸
15	Zmutt	19.81	16.89	14.92 ⁹⁸
16	Findelen	19.96	17.36	14.84 ⁹⁸
17	Ried	8.96	8.22	7.59 ⁹⁸
18	Lang	12.51	10.09	9.11 ⁹⁸
19	Turtmann	15.03	6.12	5.38 ⁹⁸
20	Brunegg (Turtmann)		6.68	5.81 ⁹⁸
21	Bella Tola	0.54	0.28	0.11 98
22	Zinal	17.91	15.42	14.23 ⁹⁸
23	Moming	7.57	6.39	5.88 ⁹⁸
24	Moiry	6.81	5.76	4.57 ⁹⁸
25	Ferpècle	11.23	9.77	9.25 ⁹⁸
26	Mont Miné	12.50	10.97	10.35^{-98}
27	Arolla (Mont Collon)	16.39	13 17	5 56 ⁹⁸
28	Tsidijore Nouve	3.37	3 20	2 85 ⁹⁷
20	Cheillon	6.00	4 56	3 41 ⁹⁸
30	En Darrey	2.81	1.00	1 05 ⁹⁸
31	Grand Désert	3 15	1.91	1.00 ⁹⁸
32	Mont Fort (Tortin)	1 40	1.03	0.70.98
33	Tsanfleuron	7 19	3.82	3 02 ⁹⁸
34	Otemma	20.47	17 51	11 64 ⁹⁸
35 35	Mont Durand	8 86	7.63	6 70 ⁹⁸
36	Breney	11.02	9.05	7 12 ⁹⁸
37	Giétro	6.44	5.50	5 42 ⁹⁸
38	Corbassière	20.71	18 31	16 28 ⁹⁸
30 30	Valsorev	3.02	2 37	1 02 ⁹⁸
39 40		0.02 0.07	2.57	1.92 1 10 98
40 41	Boyeyre	2.21	2.08	1.12 1.65 ⁹⁸
41 12	Saleina	0.68	2.00	6 00 ⁹⁸
+∠ //3	Triont	9.00 7.03	6.40	6.05 ⁹⁸
43 A A	Papeyrosse	0.87	0.46	0.00
44 15	Grand Plan Névé	0.07	0.40	0.01
4J 46	Martinets	1.03	0.20	0.10
40 17	Sex Rouge	0.04	0.59	0.40
47 18	Propio	0.34	0.09	0.33
40	Diorrodor	0.52	0.20	0.21
49 50	Oboroor	0.72	0.50 5.82	0.31 4 76 ⁹⁸
50	Untersor	0.47	0.02 20.40	4.70^{-98}
51	Cauli	33.41 33.57	29.49	∠4.44 12 10 98
52 52	Gauli	22.57	17.70 6 EE	15.12^{-00}
53	Stein	7.12	0.55	0.20^{-0}
54 55		3.51	2.38 16 FF	2.UL ⁰⁰
55 56	Iritt (Gaamen)	19.34	10.55	15.03 50
50 57		0.97	0.14	5.90 30
5/ 50	Oberer Grindelwald	10.12	9.52	9.10 30
58	Unterer Grindelwald	23.24	20.85	18.70 50

59	Eiger	2.71	2.13	1.95 ⁹⁸
60	Tschingel	7.48	6.19	5.53 ⁹⁸
61	Gamchi	2.17	1.76	1.46 ⁹⁷
62	Schwarz	2.01	1.64	1.28 ⁹⁷
63	Lämmern	7.12	4.81	2.53 ⁹⁸
64	Blüemlisalp	3.79	3.00	2.71 ⁹⁸
65	Rätzli	11.39	9.09	7.84 ⁹⁸
66	Tiefen	4.50	3.16	2.42 ⁰³
67	Sankt Anna	1.10	0.46	0.24 ⁹⁸
68	Kehlen	3.99	3.15	2.01 ⁹⁸
69	Rotfirn (Nord)	1.61	1.26	0.96 ⁹⁸
70	Damma	6.62	5.09	4.75 ⁹⁸
71	Wallenbur	2.54	1.69	1.51 ⁹⁸
72	Brunni	4.41	2.94	2.52 ⁹⁸
73	Hüfi	15.10	13.64	13.32 ⁹⁹
74	Griess	1.73	0.90	0.75 ⁹⁸
75	Firnalpeli (Ost)	1.18	0.86	0.69 ⁹⁸
76	Griessen	2.79	1.29	0.97 ⁹⁸
77	Biferten	3.42	2.81	2.00 03
78	Limmern	2.82	2.09	2.24 ⁹⁸
79	Sulz	0.36	0.19	
80	Glärnisch	2.28	1.66	1.43 ⁹⁹
81	Pizol	0.59	0.21	0.07 01
82	Lavaz	3.16	1.83	0.81 ⁹⁹
83	Punteglias	2.97	0.97	
84	Lenta	2.17	1.36	0.84 ⁹⁹
85	Vorab	3.98	2.17	1.82 ⁹⁹
86	Paradies	5.94	3.99	1.03 ⁹⁹
87	Suretta	1.52	1.15	0.75 ⁹⁷
88	Porchabella	4.49	2.58	1.61 ⁹⁹
89	Verstankla	1.98	1.27	0.85 ⁹⁹
90	Silvretta	4.55	3.35	2.94 ⁹⁹
91	Sardona (Chli)	0.52	0.36	0.30 ⁹⁹
92	Roseq	11.08	8.52	7.85 ⁹⁹
93	Tschierva	7.63	6.20	6.47 ⁹⁹
94	Morteratsch	19.25	16.40	15.92 ⁹⁹
95	Calderas	1.59	1.18	0.73 ⁹⁹
96	Tiatscha	2.82	2.07	2.03 ⁹⁹
97	Sesvenna	1.50	0.79	0.51 ⁹⁹
98	Lischana	0.49	0.21	0.05 ⁹⁹
99	Cambrena	2.60	1.82	1.57 ⁹⁹
100	Palü	8.03	6.47	5.81 ⁹⁹
101	Paradisino (Campo)	0.71	0.54	0.29 99
102	Forno	10.30	8.72	6.78 ⁹⁹
103	Bresciana	1.78	0.84	0.63 99
104	Basòdino	4.08	2.31	2.20 99
105	Rossboden	2.08	1.87	1.79 ⁹⁸
106	Mittelaletsch		8.31	7.29 ⁹⁸

The Swiss Glaciers 2003/04 and 2004/05

107	Bis	5.08	4.72	4.49 ⁹⁸
108	Orny	1.94	1.56	1.30 ⁹⁸
109	Alpetli (Kanderfirn)	16.05	13.92	13.07 ⁹⁸
111	Ammerten	1.68	1.17	0.70 ⁹⁷
112	Dungel	2.80	1.42	1.00 ⁹⁸
113	Gelten	1.72	1.17	0.91 ⁹⁹
114	Plattalva		0.72	0.42 03
115	Scaletta	1.32	0.66	0.35 ⁹⁷
116	Albigna	4.55	3.53	2.58 ⁹⁹
117	Valleggia	0.78	0.60	0.41 ⁹⁹
118	Val Torta	0.32	0.17	
119	Cavagnoli	1.93	1.36	0.76 ⁹⁸
120	Corno	0.75	0.28	0.16 ⁹⁸
352	Croslina	0.49	0.32	0.15 ⁹⁹

a the year of the measurement is indicated as superscripts

The area values for the column '1998/99' of Table 7.1 have been derived from several satellite scenes listed in Table 7.2. The updated area data are based on Landsat scenes 194-27/28 and 195-27/28 from 1989 and 1999, in the case of clouds also the corresponding scenes from 2001 and 2003 are used. Some debris-covered tongues were corrected with the higher resolution but pan-chromatic images from the Indian Remote Sensing satellite (IRS). Data from the Ikonos sensor was used to correct the outlines for two connected glaciers Stein and Steinlimmi.

Table 7.2: Satellite scenes used for evaluation of glaciated area in 1998/99

Satellite	Sensor	Resolution	Date	Path-Row
Landsat	ТМ	25 m	12.09.1999	194-27/28
Landsat	ТМ	25 m	31.08.1998	195-27/28
Landsat	ТМ	25 m	24.08.2001	194-27/28
Landsat	ТМ	25 m	13.08.2003	195-27/28
IRS-1C	Pan	10 m	20.09.1997	25-36A
IRS-1C	Pan	10 m	20.09.1997	25-36C
IRS-1C	Pan	10 m	25.09.1997	26-36C
Ikonos	Pan	1 m	17.09.2000	

References

- Alean, J., Haeberli, W., and Schädler, B. (1983). Snow accumulation, firn temperature and solar radiation in the area of the Colle Gnifetti core drilling site (Monte Rosa, Swiss Alps): distribution patterns and interrelationships. *Zeitschrift für Gletscherkunde und Glazialgeologie*, 19(2):131– 147.
- Antoni, C. (2005). Langjährige Messreihen in den Schweizer Alpen. Praktikumsararbeit ausgeführt an der VAW, ETH Zürich, unter Anleitung von A. Bauder (unveröffentlicht).
- Aschwanden, A., Beck, M., Häberli, C., Haller, G., Kiene, M., Roesch, A., Sie, R., and Stutz, M. (1996). Bereinigte Zeitreihen: die Ergebnisse des Projekts KLIMA90, Klimatologie 1961-90. Technical report, SMA, Zürich.
- Bauder, A., Funk, M., and Bösch, H. (2002). Glaziologische Untersuchungen am Glacier de Giétro im Zusammenhang mit der Sicherheit der Stauanlage Mauvoisin. In *Moderne Methoden und Konzepte im Wasserbau*, volume 175, (Band 2), pages 419–431. Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich. Internationales Symposium 7.-9. Oktober 2002 in Zürich.
- Bauder, A., Funk, M., and Huss, M. (2007). Ice volume changes of selected glaciers in the Swiss Alps since the end of the 19th century. *Annals of Glaciology*, 46:145–149.
- Bauder, A., Pralong, A., Funk, M., and Faillettaz, J. (2006). Die Gletscher der Schweizer Alpen 2003/04 und 2004/05. *Die Alpen*, 82(10/2006):34–43.
- Begert, M., Schlegel, T., and Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of switzerland from 1864 to 2000. *International Journal of Climatology*, 25(1):65–80.
- Begert, M., Seiz, G., Schlegel, T., Musa, M., Baudraz, G., and Moesch, M. (2003). Homogenisierung von Klimamessreihen der Schweiz und Bestimmung der Normwerte 1961-1990 Schlussbericht des Projektes NORM90. Veröffentlichungen der MeteoSchweiz 67, MeteoSchweiz, Zürich.
- Blatter, H. and Haeberli, W. (1984). Modelling temperature distribution in Alpine glaciers. *Annals* of *Glaciology*, 5:18–22.
- Böhlert, R. (2005). Glaziologische Untersuchungen auf dem Colle Gnifetti und auf dem Mont Blanc: Ermittlung der Eisdickenverteilung und interner Schichten mittels Georadar. Msc thesis (unpublished), Universität Zürich. pp. 98.
- Dyurgerov, M. B. and Meier, M. F. (2005). Glaciers and the changing earth system: a 2004 snapshot. Occasional Paper 58, Institute of Arctic and Alpine Research, University of Colorado. pp. 117.

- Firnberichte (1914–1978). Der Firnzuwachs 1913/14–1976/77 in einigen schweizerischen Firngebieten, number 1-64 in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. Jahresberichte herausgegeben von der Gletscher-Kommission der Physikalischen Gesellschaft Zürich, später Schweizerische Meteorologische Zentralanstalt und ab 1973 durch A. Lemans.
- Fisher, J. E. (1953). The cold ice tunnel on the Silbersattel, Monte Rosa. *Journal of Glaciology*, 2(13):195–196.
- Fisher, J. E. (1954). The cold ice tunnel on the Silbersattel, Monte Rosa (progress 1953). *Journal of Glaciology*, 2(15):341.
- Fisher, J. E. (1955). Internal temperatures of a cold glacier and conclusions therefrom. *Journal of Glaciology*, 2(18):583–591.
- Fisher, J. E. (1963). Two tunnels in cold ice at 4000 m on the Breithorn. *Journal of Glaciology*, 4(35):513–520.
- Flotron (1924-2007). Vermessung der Aaregletscher. Berichte im Auftrag der Kraftwerke Oberhasli (unveröffentlicht).
- Haeberli, W. (1976). Eistemperaturen in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie, 11(2):203–220.
- Haeberli, W. and Alean, J. (1985). Temperature and accumulation of high altitude firn in the Alps. *Annals of Glaciology*, 6:161–163.
- Haeberli, W. and Funk, M. (1991). Borehole temperatures at the Colle Gnifetti core drilling site (Monte Rosa, Swiss Alps). *Journal of Glaciology*, 37(125):37–46.
- Haefeli, R. and Brentani, F. (1955). Observations in a cold ice cap. *Journal of Glaciology*, 2(18):571–581.
- Hoelzle, M., Haeberli, W., Dischl, M., and Peschke, W. (2003). Secular glacier mass balances derived from cumulative glacier length changes. *Global and Planetary Change*, 36(4):295–306.
- Huss, M. and Bauder, A. (2009). 20th-century climate change inferred from four long-term point observations of seasonal mass balance. *Annals of Glaciology*, 50(50):207–214.
- Huss, M., Bauder, A., and Funk, M. (2009). Homogenization of long-term mass-balance time series. *Annals of Glaciology*, 50(50):198–206.
- Kääb, A. (1996). Photogrammetrische Analyse zur Früherkennung gletscher- und permafrostbedingter Naturgefahren im Hochgebirge. Mitteilungen 145, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Gloriastrasse 37-39, CH-8092 Zürich. pp. 182.
- Kasser, P., Aellen, M., and Siegenthaler, H. (1986). Clariden. In *Die Gletscher der Schweizer Alpen, 1977/78 und 1978/79*, volume 99/100 of *Glaziologisches Jahrbuch der Gletscherkommission SNG*, pages 142–148. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich.
- Laternser, M. (1992). Firntemperaturmessungen in den Schweizer Alpen. Diploma thesis (unpublished), ETH Zürich. pp. 99.

- Lliboutry, L., Briat, M., Creseveur, M., and Pourchet, M. (1976). 15 m deep temperatures in the glaciers of Mont Blanc (French Alps). *Journal of Glaciology*, 16(74):197–203.
- Lüthi, M. (2000). Rheology of cold firn and dynamics of a polythermal ice stream: Studies on Colle Gnifetti and Jakobshavns Isbræ. Mitteilung 165, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. pp. 212.
- Lüthi, M. and Funk, M. (1997). Wie stabil ist der Hängegletscher am Eiger? *Spektrum der Wissenschaft*, 5:21–24.
- Lüthi, M. P. and Funk, M. (2001). Modelling heat flow in a cold, high altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps. *Journal of Glaciology*, 47(157):314–324.
- Maisch, M. (2001). Characteristics and retreat of the swiss measurement network glaciers since 1850. In Herren, E. R., Hoelzle, M., and Maisch, M., editors, *The Swiss Glaciers 1997/98 and* 1998/99, volume 119/120 of *Glaciological Report*, pages 43–52.
- Maisch, M., Wipf, A., Denneler, B., Battaglia, J., and Benz, C. (2000). *Die Gletscher der Schweizer Alpen*. vdf, Hochschulverlag AG an der ETH Zürich, Zürich, 2. edition. Schlussbericht NFP31, 373 pp., ISBN 3 7281 2733 7.
- MeteoSchweiz (2004a). 2004 Annalen Annales Annali. Volume 141, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich.
- MeteoSchweiz (2004b). Witterungsbericht. Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich.
- MeteoSchweiz (2005a). 2005 Annalen Annales Annali. Volume 142, Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich.
- MeteoSchweiz (2005b). Witterungsbericht. Bundesamt für Meteorologie und Klimatologie MeteoSchweiz, Zürich.
- Müller, F., Caflisch, T., and Müller, G. (1976). Firn und Eis der Schweizer Alpen: Gletscherinventar. Publ. Nr. 57, Geographisches Institut der ETH Zürich, Zürich.
- Müller, H. and Kappenberger, G. (1991). Claridenfirn-Messungen 1914-1984. Technical Report 40, Zürcher Geographische Schriften, Geographisches Institut der ETH Zürich. pp. 79.
- Oeschger, H., Schotterer, U., Stauffer, B., Haeberli, W., and Röthlisberger, H. (1977). First results from Alpine core drilling projects. *Zeitschrift für Gletscherkunde und Glazialgeologie*, 13(1-2):193–208.
- Ohmura, A., Bauder, A., Müller, H., and Kappenberger, G. (2007). Long-term change of mass balance and the role of radiation. *Annals of Glaciology*, 46:367–374.
- Østrem, G. and Brugman, M. (1991). Glacier mass-balance measurements a manual for field and office work. National Hydrology Research Institute, NHRI Science Report No. 4.
- Paul, F., Kääb, A., Maisch, M., and Haeberli, W. (2008). The new swiss glacier inventory 2000. In Herren, E. R. and Bauder, A., editors, *The Swiss Glaciers 2001/02 and 2002/03*, volume 123/124 of *Glaciological Report*, pages 51–58.

- Raymond, M., Wegmann, M., and Funk, M. (2003). Inventar gefährlicher Gletscher in der Schweiz. Mitteilungen 182, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Gloriastrasse 37-39, CH-8092 Zürich. pp. 368.
- Schwerzmann, A. (2006). Borehole analyses and flow modeling of firn-covered cold glaciers. Mitteilung 194, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. pp. 115.
- Suter, S. (2002). Cold firn and ice in the Monte Rosa and Mont Blanc areas: spatial occurrence, surface energy balance and climatic evidence. Mitteilung 172, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. pp. 188.
- Suter, S. and Hoelzle, M. (2002). Cold firn in the Mont Blanc and Monte Rosa areas, European Alps: spatial distribution and statistical models. *Annals of Glaciology*, 35(1):9–18.
- Suter, S., Hoelzle, M., and Ohmura, A. (2004). Energy balance at a cold alpine firn saddle, Seserjoch, Monte Rosa. *International Journal of Climatology*, 24(11):1423–1442.
- Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M. (2001). Cold firn and ice of high-altitude glaciers in the Alps: measurements and distribution modelling. *Journal of Glaciology*, 47(156):85–96.
- Vallot, J. (1893). Recherches scientifiques dans le tunnel du Mont-Blanc. Annales de l'observatoires météorologiques, physique et glaciaire du Mont-Blanc, 1:131–143.
- Vallot, J. (1913). Valeur et variation de la témprature profonde du glacier, au Mont Blanc. *Compte Rendus Hebdomaires des Séances de l'Académie des Sciences*, 156(20):1575–1578.
- VAW (1997). Gletscherveränderungen im Val de Bagnes 1966 1996. Untersuchungen im Zusammenhang mit den Anlagen der Kraftwerke Mauvoisin AG. Zusammenfassend dargestellte Hauptergebnisse der jährlichen Messungen. Im Auftrag der Kraftwerke Mauvoisin AG.
- VAW (1998). Mauvoisin Giétrogletscher Corbassièregletscher. Glaziologische Studien im Zusammenhang mit den Stauanlagen Mauvoisin. Im Auftrag der Elektrizitätsgesellschaft Lauffenburg AG.
- VAW (1999). Mattmark Zusammenfassender Bericht über die hydrologischen und glaziologischen Messungen im Mattmarkgebiet. Bericht Nr. 7021.52.45 (H. Bösch und M. Funk, unveröffentlicht), Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. Im Auftrag der Kraftwerke Mattmark AG.
- Vincent, C., Le Meur, E., Six, D., Possenti, P., Lefebvre, E., and Funk, M. (2007). Climate warming revealed by englacial temperatures at Col du Dôme (4250 m, Mont Blanc area). *Geophysical Research Letters*, 34(16):L16502.
- Vincent, C., Vallon, M., Pinglot, J., Funk, M., and Reynaud, L. (1997). Snow accumulation and ice flow at Dôme du Goûter (4300 m), Mont Blanc, French Alps. *Journal of Glaciology*, 43(145):513–521.
- WGMS (2007). Glacier Mass Balance Bulletin No. 9, (2004–2005). Technical report, ICSU(FAGS)–IUGG(IACS)–UNEP–UNESCO–WMO.
- WMO (2005). WMO Statement of the Status of the Global Climate in 2005. World Meteorological Organization *WMO Press Releases (http://www.wmo.ch)*, No. 743.

Acknowledgements

The Cryospheric Commission again received solid support in this 125th/126th measuring period from its reliable team of observers. Sincere thanks for their cooperation are extended to: the forestry services from the cantons of Berne, Glarus, Grisons, Obwalden, St. Gallen, Uri, Ticino, Vaud and Wallis, the staff of the hydro-power stations Aegina, Mattmark, Mauvoisin and Oberhasli, all the individual helpers, the Aerial Photography Flying and Coordination Service (CCAP) of the Swiss Federal Office of Topography, Photogrammetrie Perrinjaquet AG (Gümligen) and Flotron AG. The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of the ETH Zürich, the Geographical Institute of the University of Zürich and colleagues from the national weather service MeteoSwiss provided valuable contributions to the publication of this glaciological report. A special vote of thanks goes to Susan Braun-Clarke for translating the report.

A Remote Sensing

A.1 Aerial photographs

Aerial photographs were taken at periodic intervals in order to provide a baseline documentation for various applications (mapping, glacier change, natural hazards, etc). In addition to the periodical surveys conducted by the Swiss Federal Office of Topography (swisstopo), high resolution aerial photographs have been acquired which are designed in particular for glaciological applications. In addition to the aerial photographs listed in the following tables (A.1 and A.2), other arial photos for updating the National Maps are available from swisstopo. In the year 2004, pictures were taken for the sheets 1:50'000 nos. 245, 254, 255, 262, 263, 272 and 273 and in 2005 for nos. 237, 247, 248, 249, 264, 265, 266, 274, 282, 283 and 284. The scale is approximately 1:30'000.

Figure A.1: Aerial photographs from the years 2004 and 2005.

Table A.1: Aerial photographs taken in 2004.

Glaciers	Ct.	Date	Line No.	Scale	Туре
Allalin ^c , Hohlaub ^c	VS	07.09.04	2004067001	18700	b-w
Allalin ^p , Hohlaub ^p , Kessjen ^c , Fee ^p	VS	07.09.04	2004067003	7500	b-w
Basodino ^c	ΤI	05.10.04	2004066043	11300	b-w
Bider ^p , Balfrin ^p	VS	07.09.04	2004066025	10700	b-w
Birch ^c , Nest ^c	VS	17.09.04	2004066504	8600	b-w
Corbassière ^p	VS	01.09.04	2004068041	12000	b-w
Diablons ^c , Turtmann ^p , Brunegg ^p	VS	07.09.04	2004069006	12000	b-w
Eiger ^p , Guggi ^p	ΒE	17.09.04	2004070020	12000	b-w
Fee ^P , Hohlaub ^P	VS	01.09.04	2004071001	5900	b-w
Findelen ^p	VS	01.09.04	2004066040	11300	b-w
Gauli ^p	ΒE	17.09.04	2004066071	8800	b-w
Giétro ^c	VS	01.09.04	2004068002	15400	b-w
Giétro ^p	VS	01.09.04	2004068001	9300	col
Gorner ^p	VS	28.07.04	2004066079	13000	b-w
Gries ^c , Corno ^p	VS	05.10.04	2004066013	12300	b-w
Grosser Aletsch (Mönch-Süd) ^p	VS	17.09.04	2004070023	9200	b-w
Grosser Aletsch ^p	VS	17.09.04	2004066016	15700	b-w
Grosser Aletsch ^p , Eiger ^c , Unt. Grindelwald ^p ,	VS	17.09.04	2004066501	19000	b-w
Ob. Grindelwald ^p , Oberaletsch ^p , Lang ^c					
Grosser Aletsch ^p , Oberaletsch ^p , Mittelaletsch ^p ,	VS	17.09.04	2004066503	20300	b-w
Fiescher ^p , Unteraar ^p , Unt. Grindelwald ^p					
Grosser Aletsch ^p , Oberaletsch ^p , Mittelaletsch ^p ,	VS	17.09.04	2004066502	19600	b-w
Lang ^p , Unt. Grindelwald ^p , Ob. Grindelwald ^c , Ro-					
senlaui ^c , Fiescher ^p					
Gruben ^p	VS	07.09.04	2004066026	6900	b-w
Gruben ^p , Rossboden ^p , Mattwald ^c	VS	07.09.04	2004066526	13000	b-w
Gutz ^c , Ob. Grindelwald ^p	ΒE	17.09.04	2004066505	10000	b-w
Limmern ^c , Plattalva ^c , Biferten ^p , Punteglias ^p	GL	17.09.04	2004066009	14700	b-w
Minstiger ^c , Oberaar ^p , Fiescher (Galmi) ^p	VS	17.09.04	2004066087	11600	b-w
Muragl ^c , Corvatsch ^c , Alp Ota ^c , Murtel ^c , Chapü-	GR	05.10.04	2004072161	37300	ir
tschin ^c , Rosegg ^p , Tschierva ^p					
Oberaar ^p	ΒE	01.09.04	2004065104	13800	b-w
Rhone ^p	VS	17.09.04	2004066012	10000	b-w
Ried ^c , Fee ^p	VS	07.09.04	2004066065	17000	b-w
Schwarz ^p , Balmhorn ^p , Sillern ^c , Doldenhorn ^c ,	ΒE	17.09.04	2004066022	15300	b-w
Fründen ^c					
Schwarzberg ^c , Allalin ^p	VS	07.09.04	2004067004	14000	b-w
Schwarzberg ^p	VS	07.09.04	2004067005	8000	b-w
Seewjinen ^c , Monte Moro ^c , Tälliboden ^c , Schwarz-	VS	07.09.04	2004067006	8400	b-w
berg ^p	~ ~				
Silvretta ^c , Verstankla ^c , Liatscha ^p	GR	05.10.04	2004066001	14700	b-w
	RF	28.07.04	2004066004	8000	b-w
Unteraar (Finsteraar) ^P	RF	01.09.04	2004065101	12700	D-W
Unteraar (Lauteraar) ^P	RF	01.09.04	2004065102	13300	b-w
Unteraar ^e	ВF	01.09.04	2004065103	10300	b-w

Glaciers	Ct.	Date	Line No.	Scale	Туре
Allalin ^p , Hohlaub ^p , Kessjen ^c , Fee ^p	VS	15.09.05	2005067003	8500	b-w
Arolla-Haut ^c	VS	14.09.05	2005066163	11900	b-w
Arolla-Haut ^p	VS	14.09.05	2005066162	11400	b-w
Corbassière ^p	VS	15.09.05	2005068041	10700	b-w
Diablons ^c , Turtmann ^p , Brunegg ^p	VS	15.09.05	2005069006	12600	b-w
Eiger ^c , Guggi ^c , Giesen ^c , Rottal ^c , Grosser Aletsch	ΒE	15.09.05	2005066021	16800	b-w
(Jungfraufirn) ^p					
Fiescher ^p	VS	09.11.05		6500	col
Findelen ^p	VS	14.09.05	2005066040	11700	b-w
Gauli ^p	ΒE	15.09.05	2005066071	8400	b-w
Giétro ^p	VS	14.09.05	2005068001	9300	col
Gorner ^p	VS	14.09.05	2005066579	11800	b-w
Gorner ^p	VS	17.06.05	2005066079	11800	b-w
Gries ^c , Corno ^p	VS	15.09.05	2005066013	13000	b-w
Grosser Aletsch (Mönch-Süd) ^p	VS	15.09.05	2005070023	9400	b-w
Grosser Aletsch ^p	VS	15.09.05	2005066016	14800	b-w
Gruben ^p	VS	15.09.05	2005066026	6100	b-w
Guggi ^p , Eiger ^p	ΒE	15.09.05	2005070020	13200	b-w
Gutz ^c , Ob. Grindelwald ^p	ΒE	15.09.05	2005066505	14400	b-w
Hohlicht ^{, p} , Bis ^{, p} , Brunegg ^{, p} , Turtmann ^{, p}	VS	16.03.05	2005066030	15000	b-w
Hohlicht ^p , Bis ^p , Brunegg ^p , Turtmann ^p	VS	03.04.05	2005066830	13300	col
Oberaar ^p	ΒE	05.08.05	2005065004	15700	b-w
Orny ^p , Saleina ^p , A Neuve ^c	VS	15.09.05	2005066089	11800	b-w
Rhone ^p	VS	15.09.05	2005066012	9700	b-w
Rossboden ^p	VS	15.09.05	2005066090	11900	b-w
Schwarzberg ^p	VS	15.09.05	2005067005	8000	b-w
Seewjinen ^c , Monte Moro ^c , Tälliboden ^c , Schwarz-	VS	15.09.05	2005067006	8900	b-w
berg ^p					
Silvretta ^c , Verstankla ^c , Tiatscha ^p	GR	15.09.05	2005066001	14700	b-w
Trient ^c	VS	15.09.05	2005066018	16600	b-w
Trient ^p	VS	15.09.05	2005066017	6400	b-w
Trift ^p	ΒE	14.09.05	2005066004	8800	b-w
Tschierva ^p , Roseg ^p	GR	14.07.05		5000	ir
Unt. Grindelwald ^p	ΒE	15.09.05	2005066007	19300	b-w
Unteraar (Finsteraar) ^p	ΒE	05.08.05	2005065001	14000	b-w
Unteraar (Lauteraar) ^p	ΒE	05.08.05	2005065002	13700	b-w
Unteraar ^p	ΒE	05.08.05	2005065003	10000	b-w
Weingarten ^p	VS	14.09.05	2005066643	11100	b-w

Table A.2:	Aerial	photographs	taken	in 2005.
------------	--------	-------------	-------	----------

Glacier shown completely Glacier shown partially с р

Type of film: b-w black-and-white colour

col ir

infrared

B Remarks on individual glaciers

1 Rhone

2004: Vermessungsflug am 17.9.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2005: Vermessungsflug am 15.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. Der Rhonegletscher entwässert jetzt in der Mitte und nicht mehr orographisch rechts. Die randlichen Seen haben alle das gleiche Niveau auf Kote 2208.7m und sind unterirdisch zusammenhängend mit dem Ausfluss am Felsriegel. (VAW/ETHZ – A. Bauder)

3 Gries

2004: Vermessungsflug am 5.10.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 15.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

4 Fiescher

2004: Der im Jahr 2003 südlichste Punkt bei 104^g ist inzwischen stark mit Schutt bedeckt und nicht mehr auszumachen. Der Gletscher ist auf der orographisch rechten Seite des Gletschertors stark zurückgegangen. Wir hatten den Eindruck, dass der Gletscher in der Dicke stark abnimmt. (P. Aschilier)

2005: Der Gletscher geht weiter zurück. Die Punkte 6, 7 und 9 konnten nicht mehr erkannt werden da nur Schutt zu sehen ist. Die Punkte 10, 11 und 12 habe ich neu aufgenommen. (P. Aschilier)

5 Grosser Aletsch

2004: Vermessungsflug am 17.9.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 15.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

6 Oberaletsch

2005: Die Messungen beim Gletschertor (Punkte 1 und 2) sind ziemlich verlässlich. Bei den seitlichen Punkten ist sehr schwer abzuschätzen, ob noch Eis vorhanden ist. (C. Theler)

7 Kaltwassergletscher

2004: An verschiedenen Gräben bilden sich Eisfelder. (M. Schmidhalter)

2005: Die Punkte 1 und 3 waren vom frühen Schnee nicht mehr frei, so dass eine genaue Messung nicht möglich war. (M. Schmidhalter)

10 Schwarzberg

2004: Vermessungsflug am 7.9.2004, photogrammetrische Auswertung durch H. Bösch - VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ - H. Bösch)

2005: Vermessungsflug am 15.09.2005, photogrammetrische Auswertung durch H. Bösch - VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. Der Gletscher endet zur Zeit in einem sehr flachen Teil, darum kaum Änderungen der Höhenlage der Gletscherzunge. (VAW/ETHZ - H. Bösch)

11 Allalin

2004: Vermessungsflug am 7.9.2004, photogrammetrische Auswertung durch H. Bösch - VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ - H. Bösch)

2005: Vermessungsflug am 15.09.2005, photogrammetrische Auswertung durch H. Bösch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. Orographisch rechts ist ein Stück der Zunge gerutscht, darum ist der tiefste Punkte tiefer als letztes Jahr. (VAW/ETHZ - H. Bösch)

12 Chessjen

2004: Vermessungsflug am 7.9.2004, photogrammetrische Auswertung durch H. Bösch - VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ - H. Bösch)

2005: Vermessungsflug am 15.09.2005, photogrammetrische Auswertung durch H. Bösch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. Der linke Teil ist am verschwinden. Der rechte Teil endet in einem kleinen See. (VAW/ETHZ - H. Bösch)

13 Fee

2004: Der tiefste Punkt (im linken Bereich der Gletscherzunge) konnte wegen der fehlenden Zugänglichkeit nicht gemessen werden. (U. Andenmatten)

2005: Der linke Bereich der Gletscherzunge konnte wegen der Unzugänglichkeit nicht gemessen werden. (U. Andenmatten)

16 Findelen

2004: Vermessungsflug am 1.9.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 14.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

17 Ried

2004: Messung bezüglich Basispunkt Nr.70 (630'800.72 / 111'899.87 / 2'068.93). (P. Rovina)

2005: Der Basispunkt (Nr.70 : 630'800/111'899) müsste eventuell bereits näher zum Gletscher gelegt werden. (P. Rovina)

18 Lang

2005: Messpunkt 4 wurde neu eingerichtet. Distanzmessung mit Fernglas. (H. Henzen)

23 Moming

2004: Le glacier ne peut plus être mesuré par méthode de la bande métrique, car l'accès est très difficile (partie de varappe). (M. Barmaz)

2005: Le glacier ne peut plus être mesuré par méthode de la bande métrique, car l'accès est trop difficile (partie de varappe). (M. Barmaz)

24 Moiry

2004: L'avance du point A° est dû à une rupture d'un bloc de glace provenant de la langue. A' n'est plus mesuré car la langue du glacier change de direction. L'azimut de A' se situe donc sur une partie de glacier ensevelie sous la moraine - 2 nouveaux points x et y. (M. Barmaz)

25 Ferpècle

2005: Le volume du glacier a fortement diminué. (F. Pralong)

26 Mont Miné

2005: Formation d'un lac au bas du glacier. Chute de blocs de glace (de séracs) importante au niveau du haut du glacier. (F. Pralong)

28 Tsidjiore Nouve

2005: Recul important uniquement sur une partie du glacier. (F. Pralong)

29 Cheillon

2005: Le point 2-01 est introuvable, nous sommes repartis sur le point 2-97. Point 3: introuvable, nous avons fixé un nouveau point "viable" à 173m. Point 7: Le glacier a disparu de la zone de mesure. (O. Bourdin)

30 En Darrey

2005: Point 1: la couche de pierre recouvrant le glacier ne permet pas, cette année, de distinguer la limite précise entre la moraine et la glace. Les mesures n'ont pas pu être continué pour l'instant. (O. Bourdin)

31 Grand Désert

2005: Point A: détermination possible à l'arrière de la barre rocheuse. (F. Vouillamoz)

32 Mont Fort

2005: Point 2: estimation. (F. Vouillamoz)

34 Otemma

2004: Rive droite, le mur de glace est toujours bien présent mais une grande cavité se creuse à l'arrière de ce dernier. Pour ce qui est du Point 14/93 c'est un vrai parcours du combattant sur l'avant terrain pratiquement plat, couvert de sables mouvants dû aux changements de lits continuels des torrents en crues. 560 mètres sans une possibilité d'établir un nouveau point fiable. Par contre, le nouveau point 16/03 (indiqué par erreur dans l'axe 14/93 l'année dernière) a bien résisté. Rive gauche, la dépression de l'année passée s'est transformée en un trou béant et se fracture toujours plus loin. (J.-J. Chabloz)

2005: L'avant terrain est toujours mouvant! J'ai mis en place un nouveau système de mesure à partir de l'axe du point 16/03 qui ne concerne que la partie centrale du front glaciaire. Cette annee, seule la mesure dans l'axe 16/03 est utilisée. (J.-J. Chabloz)

35 Mont Durand

2004: Toujours le chaos, la voûte qui séparait la cavité rive droite s'est effondrée. La langue centrale n'a pratiquement pas reculé mais elle est en voie de dislocation complète et cela jusqu'au gros trou central qui la surplombe. Rive gauche, grande ablation. D'autre part de grandes crues ont dû avoir lieu, car le terrain devant le front est méconnaissable. Par chance, le point 8/99, n'a pas été recouvert. Malgré le chiffre favorable de +1.4 mètre, c'est la débacle. (J.-J. Chabloz)

2005: Effondrement total de la voûte du portail. Le trou béant qui le surplombe laisse voir le lit rocheux et le decollement de la glace tout autour. Le torrent glaciaire a été détourné sur la rive gauche par d'importantes chutes de blocs de rochers et de gravats. Grandiose! (J.-J. Chabloz)

36 Breney

2004: +84.05 mètres! Cela est dû au fait que les deux mesures (point 20/92 et 21/94) sont tangentes à la rive droite qui s'est affaisée vers le plateau devant le front du glacier. Là aussi, pour les points 20/92, 21/94 et 19/86, il n'y a pas moyen de créer un nouveau point, l'avant terrain, sable et gravier fin est complètement gorgé d'eau. Rive gauche, la forte pente, couverte de gros blocs issus de l'ancien glacier des Portons, s'érode fortement et maintenant, la glace est bien visible. La diminution de la masse est partout visible ainsi que le trou béant au niveau des séracs du Brenay. Ici aussi, les chiffres sont trompeurs. (J.-J. Chabloz)

2005: Un avant terrain gorgé d'eau. Nouveau système de mesure de la partie centrale du front glaciaire à partir de l'axe du point 22/05. Une diminution de la masse au niveau des séracs du Brenay est bien visible. La rive droite se creuse assez fortement. (J.-J. Chabloz)

37 Giétro

2004: Vermessungsflug am 1.9.2004, photogrammetrische Auswertung durch Photogrammetrie Perrinjaquet im Auftrag der Force Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 14.9.2005, photogrammetrische Auswertung durch Photogrammetrie Perrinjaquet im Auftrag der Force Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ - A. Bauder)

38 Corbassière

2004: Vermessungsflug am 1.9.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ im Auftrag der Force Motrices de Mauvoisin SA. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 14.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ im Auftrag der Force Motrices de Mauvoisin SA. (VAW/ETHZ - A. Bauder)

40 Tseudet

2005: La mesure est prise en supposant la présence de glace sous une couche épaisse de moraine de surface: aléatoire et incertain. (O. Guex)

43 Trient

2004: Ce qui est plus préoccupant, c'est la perte d'épaisseur de la langue. On observe de grands sillons dans le sens de la pente. Sur le bord droit du glacier, plusieurs lambeaux de glace morte, noire, se détachent de manière évidente. Ils laissent présager un futur retrait encore plus spectaculaire. (J. Ehinger)

2005: Visite du 17 juillet 2005, buts: évaluer visuellement l'état du glacier, prendre des photos. Pas de mesures prévues. Sur la rive droite du glacier, on remarque plusieurs bras du torrent, dont le débit est très important. Cette forte activité hydrologique dénote une fonte importante de l'appareil glaciaire. La surface du glacier est sombre, gris-noir, très fissurée et crevassée, plus bleue au centre. Elle ressemble à la peau d'un soufflé retombé. En effet, on a l'impression que la fonte très importante de ces dernières années a abaissé considérablement l'épaisseur de la langue. Cette dernière se trouve sur la rive gauche de la vallée, formant une sorte de crosse de hockey. En marge de l'axe principal, la glace s'amincit fortement. Une bande de glace morteße détache distinctement dans le paysage, par sa couleur sombre et sa surface lisse. Cette glace morteforme un liseré, en périphérie de l'appareil principal, plus épais, plus crevassé et plus bleu. Si les conditions météorologiques continuent à être aussi défavorables aux glaciers, ces zones de glace morte", de plus en plus minces, disparaîtront rapidement. Le retrait passera probablement par une phase d'amincissement (déjà en cours) suivie d'un retrait horizontal rapide, dès qu'un seuil d'épaisseur sera atteint, comme on a pu le constater en 2000, lorsque la langue était située plus bas dans la vallée.

Visite du 3 septembre 2005, buts: évaluer visuellement l'état du glacier, prendre des photos. Pas de mesures prévues. Depuis juillet, la fonte se poursuit intensément, comme en témoigne le niveau toujours élevé du torrent. Ce dernier récolte les eaux de l'extrémité de la langue et, aussi, de la partie arrière de la langue, loin en amont. La partie terminale de la langue repose encore juste dans le lit du torrent, mais le glacier s'éloigne du talweg à mesure que le regard porte vers l'amont. La langue quitte le plateau du Trient en restant haut perchée sur le flanc gauche de la vallée, puis tourne vers la droite en direction du torrent. Plusieurs digitations de glace morteplongent vers le talweg, entre la partie extrême de la langue et le plateau du Trient.

Visite du 24 septembre 2005, buts: Mesurer la position du front du glacier. Prendre des photos du glacier. Affiner les mesures des coordonnées des points relevés en 2003 et en 2004 grâce au point de triangulation sous Vésevey. Lever le plus grand nombre possible de points en bordure de la langue glaciaire. A la fin du mois de septembre, et vu du nouveau point de mesure sous l'alpage de Vesevey, l'ampleur de la fonte et de la rétraction verticale du glacier

apparaît dans toute son étendue. Les crevasses sont très ouvertes, des blocs ont basculé et beaucoup de glace éboulée se trouve tout le long de la bordure de la langue, en direction du talweg. Pour la première fois depuis la fin du Petit Age Glaciaire", probablement, on voit la roche apparaître à travers un gros trou dans la langue, non loin de l'extrémité. Le front du glacier s'est encore retiré, mais on peut s'attendre à une régression beaucoup plus importante dans les années à venir, si les conditions météorologiques restent aussi défavorables aux glaciers. Le front pourrait remonter à 2300 mètres environ, alors qu'il se trouve actuellement à 2030 mètres. En effet, toute la glace comprise entre ces deux altitudes semble morte", on dirait que cette partie du glacier n'est plus alimentée ou alors de manière très anémique. Vol en avion du 6 novembre 2005, buts: Prendre des photos du glacier vu du ciel. L'atrophie de la langue du glacier est très visible, confirmant les observations faites au sol. La langue se retire peu à peu sur la rive gauche du torrent, loin du lit. Les zones de glace morteapparaissent visiblement sur tout le bord aval du glacier. Les crevasses sont très ouvertes, amplifiant l'apparence "dégonflée" de la langue glaciaire. Le plateau du Trient est aussi crevassé par endroits, surtout dans les bords, lorsque la pente est plus importante. Les crevasses des environs de l'Aiguille du Tour sont particulièrement impressionnantes. Ces crevasses révèlent l'abaissement du niveau de la glace sur le plateau. Des témoignages d'alpinistes soulignent la fonte importante de ces dernières années : chemins d'accès fortement modifiés, niveau de la glace bien plus bas à certains passages obligés. Malheureusement, nous ne disposons pas de

mesures permettant de confirmer ces témoignages. En 2005, et semble-t-il pour la première fois, des alpinistes sont tombée dans une crevasse sur le Plateau du Trient. L'ouverture des crevasses est un indicateur de perte de masse et d'épaisseur du glacier. Toutes les observations convergent: la fonte se poursuit intensément.

De 2004 à 2005, le glacier a reculé de 35 mètres, dans l'extrémité la plus en aval de la langue. Le front se trouve actuellement à 2030 mètres d'altitude. (J. Ehinger)

44 Paneyrosse

2004: Le dernier point mesurable (111) est un point latéral, il arrive bientôt à échéance. Le volume de glacier, au-dessus de la barre rocheuse, est encore très important. (J.-Ph. Marlétaz)

2005: Point A: mesure précédante en 2001, points III et A: dernière année de mesure, points 51 à 59: nouveaux points fixés en 2005 au-dessus de la barre rocheuse. (J.-Ph. Marlétaz)

45 Grand Plan Névé

2005: Les points 5 et B120 arrivent au terme de leur mesurage. Point 5: plus de neige B120: lac (J.-Ph. Marlétaz)

47 Sex Rouge

2004: Point 1, 2 et 3 le glacier est disparu ou est recouvert par des éboulis. Point 4, 5 et 6 : précision des mesures +/- 50 cm (neige fraiche reliquat), mais le glacier n'a pas reculé. (J. Binggeli)

2005: Point 1 à 3: En conséquence du recul prononcé, nous proposons d'abandonner les mesures de ces points, les résultats obtenus n'étant pas fiables. Au point 4 plus précisement apparait pour la première fois une petite cavité provenant de la fonte de la glace. (J. Binggeli)

48 Prapio

2004: Le glacier n'a pu étre mesuré car il était encore recouvert par un névè qui s'étendait au moins jusqu'à 50 mètres de la mesure 2003. Par la suite, il a eu constamment des k-rachées" de neige qui ont recouvert la zone. (J. Binggeli)

2005: Distance précédente: Il s'agit de la distance mesurée en 2003. Recul de glacier: Il s'explique vraisemblablement par la fonte accélérée de la langue glaciaire très mince à l'extrème point bas du glacier. Compte tenu de la nouvelle situation, un nouveau point sera fixé. (J. Binggeli)

53 Stein

2004: Die Messung ab Punkt 2 ist in der Nähe des Gletschertores, deshalb ist dort der Rückzug mit 45m besonders gross. (R. Straub)

54 Steinlimi

2005: Auf der orographisch rechten Seite ist das mit Schutt bedeckte Eis fast vollständig geschmolzen und die Gletscherzunge ist wieder gut sichtbar. (R. Straub)

55 Trift (Gadmen)

2004: Vermessungsflug am 28.7.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 14.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. Die Seekote liegt auf 1651.5 m.ü.M. Inzwischen ist beinahe der gesamte noch in den See reichende Teil der Zunge weggeschmolzen. (VAW/ETHZ - A. Bauder)

57 Oberer Grindelwald

2004: Längenveränderung minim, jedoch weiterer Massenverlust. (H. Boss)

59 Eiger

2004: Die neue Messlinie hat sich bewährt. Rückgang etwas stärker als im Vorjahr. Dem Gletschertor ist Lawinenschnee vorgelagert (nicht einbezogen), Steinmannli bei den Punkten neu. (R. Zumstein)

2005: Weil sich erst weit oben im Felsband ein Schnittpunkt zum Gletscher ergab, wurde Punkt 6 nicht gemessen, aber der Gletscherverlauf festgehalten. Rückgang im gleichen Umfang wie im Vorjahr. Die Eisdicke ist grösser als in früheren Jahren, aber die Unterhöhlung ist örtlich so stark, dass die Kuppeln dieser "Hallenteilweise eingebrochen sind. (R. Zumstein)

60 Tschingel

2004: Punkt I in den Graben gerutscht. Punkt H neu angelegt. Wasseraustritt beim rechten Gletschertor sehr klein (Lütschine dagegen mächtig), Bächlein durch Rutsche zugedeckt, teilweise beträgt die Grabenbreite 20m, Eisreste im Graben sichtbar. Abschwächung des Rückzuges, deutliche Verflachung beim kleinen Gletschertor. Höhe Punkt F"2269 m.ü.M. (bestimmt ab Punkt E Schwammberger). Fotostandort wie Vorjahre. (R. Zumstein)

2005: Die Starkniederschläge von 21.- 23.08.05 bis über 3000m hinauf durchweichten das Terrain und verursachten Rutschungen an den Grabeneingängen. Vorstoss des Gletschers beim Punkt F", also beim Gletschertor. Ein hoher Eisturm kündigt einen Vorstoss im Bereich C - F an, während das zweite Gletschertor sehr flach geworden ist und nur ein Bächlein dort hervorquellt. Rückgang an allen anderen Punkten. (R. Zumstein)

61 Gamchi

2004: Alle 5 Messpunkte wurden näher zur Gletscherzunge gesetzt. (R. Descloux)

62 Schwarz

2004: Wegen des unbegehbaren Vorgeländes (Wasser) muss die Messrichtung entlang des Bachufers (Felsband) neu auf 185^g festgelegt werden. Das Zungenende ist in grosse Blöcke zerfallen. Ein neues Gletschertor bildet sich ca. 10m weiter hinten. (U. Vogt)

2005: Das Vorgelände ist geprägt durch ein neues Bachbett. Der Versicherungspunkt h' ist vom Bach überschüttet worden. Ein neuer Versicherungspunkt wurde an den anstehenden Fels angebracht. Markantes Gletschertor. (U. Vogt)

63 Lämmern

2004: Punkt e' wurde neu festgelegt, um künftig wegen des coupierten Vorgeländes besser messen zu können. Der Gletscher weist zwei Gletschertore auf, je eines an der orographisch linken und rechten Seite, das Gelände verläuft in konkaver Form. (U. Vogt)

2005: 2cm Neuschnee. Die Gletscherzunge ist am Rand stark abgeflacht. (U. Vogt)

64 Blümlisalp

2004: Deutlicher Massenverlust. Alle Messpunkte neu markiert. (U. Fuhrer)

2005: Vorderer und hinterer Gletscher deutlich getrennt, in Falllinie. Markanter Rückgang und Massenverlust. (U. Fuhrer)

66 Tiefen

2004: Der markante Rückzug im nördlichen Zungenbereich setzt sich fort. Beim Messpunkt 2000 ist der Gletscher stationär, das Eis wird hier durch eine mächtige Schuttauflage konserviert. (J. Marx)

2005: Der Rückzug beim nördlichsten Messpunkt ist nicht mehr repräsentativ. Für die Berechnung des Mittelwertes wurde der Punkt 99 nicht mehr mitberücksichtigt. Im südlichen Bereich ist der Rückgang moderat, der Dickenverlust (Masse) ist jedoch ausgeprägt. In diesem Bereich wurde ein neuer Messpunkt (06) eingerichtet. (J. Marx)

67 St. Anna

2004: Der sehr ausgeprägte Rückzug beim Messpunkt 2000 (-96m) ist auf seitliches Abschmelzen zurückzuführen und wurde für die mittlere Veränderung nicht mitberücksichtigt. Eine Neuschneeschicht, welche sich nur auf dem Eis erhalten konnte, vereinfachte die Festlegung des Gletscherrandes wesentlich. Südlich des Seeleins konnte auf einer Felsstufe ein neuer Messpunkt (2004) eingerichtet werden. Bei einem weiteren Rückgang wird er die Punkte 93 und 95 ersetzen. (J. Marx) **2005:** Ab Anfang Oktober war der Gletscher bereits schneebedeckt. Die nordexponierten Hänge sind seither nie mehr vollständig ausgeapert. Am 17. Oktober konnten vom Bätzberg Fotos gemacht werden. (J. Marx)

68 Chelen

2004: Der Rückgang liegt bei allen Messpunkten in derselben Grössenordnung. Für alle im Jahr 2001 eingerichteten Messpunkte konnten in Messrichtung neue Punkte markiert werden (Blöcke). (J. Marx)

2005: Der Rückgang liegt im Rahmen der vergangenen Jahre. (J. Marx)

69 Rotfirn

2004: Die Messpunkte im Bereich des Gletschertors weisen kleine Vorstösse aus. Diese dürften eher auf abstürzende Eispakete als auf einen Vorstoss des ganzen Gletschers zurückzuführen sein. (J. Marx)

2005: Nach dem SStillstandim vergangenen Jahr ist der Rückgang wieder ausgeprägt. Der in den 1960er Jahren beobachtete Minimalstand dürfte inzwischen wieder erreicht sein. (J. Marx)

70 Damma

2004: Bereits im Vorjahr hat sich der Gletscher auf einer Höhe von ca. 2300 m.ü.M.getrennt. Im Zungenbecken zwischen Winteregg und Gemschistöckli liegt nur noch Toteis. Fehler in der Vermessung der Punkte 2001 B und 2001 C entdeckt. Dies hat jedoch keinen Einfluss auf die Längenänderung der vergangenen 2 Jahre, hingegen ist der Verlauf des Eisrandes in den Jahren 2001-2003 nicht korrekt. Die Toteisscholle hat sich verkleinert. Der beim Punkt 1996 gemessene Vorstoss ist auf ein abgestürztes Eis-/Schutt-Paket zurückzuführen. Der Punkt 2003 wurde dadurch verschüttet. Der aktuelle Gletscherrand konnte noch nicht vermessen werden, es wurden nur Fotos gemacht. Es wird versucht neue Messpunkte einzurichten, welche Messungen auf Distanz mit optischen Geräten ermöglichen. (J. Marx)

2005: Das geplante Einrichten neuer Messpunkte ist jedoch unwetterbedingt (Hochwasser Ende August) auf der Strecke geblieben. Anhand dem Vergleich der Fotos aufgenommen vom "Bergäus (nördliche Seeseite), ist gegenüber dem Vorjahr ein leichter Rückgang sichtbar. (J. Marx)

71 Wallenbur

2004: Der Rückgang setzt sich auf der ganzen Zungenbreite fort. Eine geschlossene Schuttschicht konserviert den ganzen Zungenbereich. (J. Marx)

2005: Der Massenverlust ist augenfällig. Der Grat vom Sustenjoch zum KI. Sustenhorn kommt immer mehr zum Vorschein. (J. Marx)

73 Hüfi

2004: Das Zungenende befindet sich im Bereich einer schwer zugänglichen Felsstufe. Die Messung in der vorgesehenen Richtung bezieht sich auf eine Toteisscholle, welche sich in der Schlucht vom Gletscher getrennt hat. Zum Zungenende war nur eine optische Messung möglich. (J. Marx)

2005: Die Toteisscholle ist ganz weggeschmolzen. Das Zungenende befindet sich praktisch an der gleichen Stelle wie im Vorjahr. Der Zungenbereich ist nicht zugänglich. Die Messung erfolgte mit einem optischen Distanzmessgerät. Der Rückgang ist sichtbar aber nicht genau zu messen. (J. Marx)

74 Griess

2004: Dank einer mächtigen Schuttauflage bleibt der Gletscher momentan beinahe stationär. (J. Marx)

2005: Der Gletscher und das Vorfeld lagen unter einer dünnen Schneedecke. Die Messpunkte konnten jedoch gefunden werden. (J. Marx)

77 Biferten

2004: Im Osten eine schlecht erkennbare Gletscherzunge, da sie mit viel Geschiebe überdeckt ist. Im Bereich des ersten Gletschertors legt sich der Gletscher immer flacher hin. Der Abstand zur Fassung steigt auf 124.7m weiter an. Den tiefsten Punkt mit 1952.1 m.ü.M.messen wir etwas nordwestlich des austretenden Gletscherbaches und seinem Tor, das sich auf 1952.7 m.ü.M.befindet. Zwischen den beiden Gletschertoren ist die Veränderung dieses Jahr recht gering. Die Höhenkoten des zweiten Gletschertors 2008.5 m.ü.M.und beim darunter liegenden Bach 2001.5 m.ü.M.(Vorjahreswerte: Tor 2012,0 m.ü.M.und Bach 2006,0 m.ü.M.). Das Tor hat an Mächtigkeit verloren. Vergleich der Eisdicke: Die Höhe auf dem Gletscher betrug im Jahre 2002 noch 2044.3 m.ü.M.heute beträgt die Höhe an der gleichen Stelle 2035.9 m.ü.M.Hier ist ein Schwund von 8.6m auszumachen. Der recht geringe Rückzug der Gletscherzunge in diesem Jahr könnte mit dem hier im Frühling noch lange vorhandenen Schnee zusammenhängen. (H. Klauser)

2005: Die Schneegrenze war an der Gletscherzunge, die man so äusserst einfach ausmachen konnte. Die Resultate zeigen schliesslich einmal mehr erschreckende Zahlen. So beträgt der Abstand der Fassung 2 zum Gletschertor dieses Jahr bereits 150.7m. Auch die Höhenkoten sprechen dieselbe Sprache. Das Gletschertor liegt nach der neusten Messung bei 1964.8 m.ü.M.und der tiefste Punkt den wir etwas westlich vom Gletschertor vorfinden auf 1960.7 m.ü.M. Das Vorgelände beim Gletschertor ist flacher geworden und erleichtert die Überquerung des Gletscherbachs. Zwischen den Gletschertoren ist der Gletscherrand immer noch recht schwierig auszumachen, das aufliegende Geröll lässt den Verlauf lediglich erahnen. Im Bereiche des Tores 2 fällt der intensive Zerfall auf. Völlig zahm und flach läuft hier der Gletscherbach/Tor beträgt 2003.8 m.ü.M.Der Dickenvergleich bestätigt den bereits festgestellten Gesamteindruck: Letztes Jahr eine Höhe von 2035.9 m.ü.M.und nun 2031.0 m.ü.M.ergeben ein Absenken der Oberfläche von 4.9m. (H. Klauser)

78 Limmern

2004: Die Ausaperung war fast so stark wie im Vorjahr! Lediglich die Ränder und Löcher im Umfeld weisen Firnflecken auf. Auf dem Eis liegt kaum etwas. Bilder vom Kistenband auf 2729.5 m.ü.M.aus aufgenommen. Der Messpunkt 6 lässt sich nicht mehr vermessen. Das Eis ist aus einer Mulde vollständig verschwunden. Eine Rippe trennt die Mulde vom Gletscher. Die starke Schuttbedeckung machen das Auffinden des Gletscherrandes nach wie vor schwierig, es wird aber besser. (U. Steinegger)

2005: Der Messpunkt 5 wird allmählich auch schwierig zu messen. Die erfasste Distanz bezieht sich auf Eisreste, die in einer Mulde liegen. Dahinter hat sich in Messrichtung eine Eislücke aufgetan. Wie schon früher beschrieben, fliesst das Eis nicht mehr in die Richtung der Messpunkte sondern - gelenkt durch die Felsrücken - fast nach Osten (früher Nordost). (U. Steinegger)

79 Sulz

2004: Die Schuttbedeckung war immer schon extrem, jetzt gibt es dann aber bald kein Eis mehr! Die kleine Längenzunahme darf nicht drüber hinwegtäuschen, dass die Dicke sicher abgenommen hat, indem vor allem die Flanken zurück gehen. (Th. Rageth)

2005: Nach wie vor profitiert der Gletscher von den feuchten Sommern 2004 und 2005. (Th. Rageth)

80 Glärnisch

2004: Messung zusammen mit der Hüttenwärtin der Glärnischhütte, Heidi Marti. Es sind Terrassierungen über dem Ausfluss des Gletscherbaches festzustellen, die erahnen lassen, dass der Gletscher auch in der Dicke kräftig zusammensackt. Der nördliche Teil weist eine klare und einfache Linie auf. Der Gletscherbach hat sich einen etwas anderen Ausweg gesucht und fliesst ganz am Fels unter dem Fixpunkt 12 auf der Höhe von 2337.5 m.ü.M.hinaus. Ein zweiter Gletscherbach ist momentan nicht auszumachen. Der tiefste Punkt ist nicht mehr identisch mit dem Gletscherbach, er befindet sich nun 7m tiefer auf 2330.3 m.ü.M.und etwas südlicher. (H. Klauser)

2005: Der Gletscher zieht sich weiter zurück. Als Ersatz für den Fixpunkt 12 wird auf einer Felsinsel unmittelbar vor dem Gletscherrand auf 2366.44 m.ü.M.der neue Fixpunkt 13 mit Meissel und Hammer im Stein markiert, von wo aus die ganze Gletscherzunge eingesehen werden kann. Der Gletscherbach der nach wie vor nur an einer Stelle aus dem Eis hervorfliesst, ist etwa am selben Ort wie vor einem Jahr auf der Höhe von 2342.0 m.ü.M.Der tiefste Punkt befindet sich immer noch etwas südlicher als der Bachaustritt auf 2330.1 m.ü.M. Gegen das südlichen Ende der Gletscherzunge hin ist der Verlauf des Randes wegen der Schuttbedeckung schwieriger auszumachen. Die Ausaperung des Gletschers war zum Zeitpunkt der Messung wirklich optimal. (H. Klauser)

81 Pizol

2004: Alle Messungen erfolgten mit dem Fadenmesserät im traditionellen Azimut 250^g ab den 6 Basispunkten der C-Linie. Der Gletscher war überall leicht schneebedeckt. Die Spalten waren noch sichtbar, traten aber weniger gut zu Tage als im Vorjahr. Ausserdem waren dem Gletscher wieder grössere und kleinere Schneefelder vorgelagert. Der Eisrand bei den Messpunkten 2 bis 5 war trotz der Schneefelder relativ gut zu finden; in den Punkten 1 und 6 jedoch wegen der Schutt- und Schneeüberdeckung nicht. Der Gletscherrand ist erst Ende Juli ausgeapert. Alle Messpunkte (auch der A-Linie) wurden nachgefärbt. (A. Hartmann)

2005: Der Gletscher war praktisch frei von Schnee. Die Spalten traten gut zu Tage. Dem Gletscher waren einige kleinere Schneefelder vorgelagert. Aus Distanz glaubte man, den Eisrand gut erkennen zu können. Seine exakte Bestimmung war aber in den Punkten 2, 3 und 4 wegen einer dünnen Firnschicht vor dem eigentlichen Eisrand nicht so einfach, wie es zunächst schien. Ab den beiden randständigen Basispunkten 1 und 6 ergaben sich im Azimut 250^g keine

Schnitte mehr mit dem Gletscherrand. Vermutlich befindet sich unter dem Schutt an diesen Stellen noch Eis, dessen Verlauf konnten wir jedoch nicht eruieren. Der Gletscher hat dieses Jahr wieder einen ähnlichen Stand wie im Jahr 2003 erreicht. Aus dem Vergleich mit dem Foto von 1957 (Urs Eugster) ab dem ähnlichen Standort fällt der starke Rückzug in den vergangenen 48 Jahren auf. Interessant war dieses Jahr das schöne Gletschertor, das sich im Bereich des Eisrandes von Punkt 3 gebildet hat. War so bisher noch nie zu beobachten. (A. Hartmann)

82 Lavaz

2005: Nach erfolgter konventioneller Einmessung (Messband) wurden die Daten mittels GPS zusätzlich noch elektronisch ermittelt. Leider stellte sich hier beim späteren Vergleich im Büro mit den im Jahr 2004 erhobenen Messdaten eine starke Abweichung heraus. Die im Jahr 2005 gemessenen elektronischen Daten weichen um etwa 30 Höhenmeter nach unten von den Daten des Jahres 2004 ab, obwohl nachweislich der Gletscher keinen Vorstoß sondern einen Rückzug hatte. Dieser Rückzug war vor Ort deutlich erkennbar. Eine genaue Darstellung der Veränderungen mittels GIS-Plan ist deshalb leider nicht möglich. Im Jahr 2006 muss eine erneute Messung Klarheit darüber bringen, welche Messung (2004 oder 2005) fehlerhaft war. (U. Maissen)

83 Punteglias

2004: Kein Schnee im Messbereich, proglazialer Gletschersee. Die Gletscherzunge ist vollständig von Schutt überlagert, Eis ist nur an wenigen Stellen sichtbar. Der Verlauf der Gletscherzunge ist vor allem im zentralen Bereich nicht immer eindeutig. Probleme bieten die dem eigentlichen Gletscherkörper vorgelagerten Schuttformen. Diese enthalten vermutlich noch Eis, scheinen aber mit dem Gletscherkörper nicht mehr in Verbindung zu stehen. Als solche wurden sie als Toteis betrachtet und nicht in die Messung einbezogen. Abflussverhältnisse: Wasser tritt an diversen Stellen aus dem Gletscher aus, vor allem im Bereich des westlichen Gletschertors und nördlich des proglazialen Gletschersees. Am hervortretenden Eis ist der Schmelzprozess sichtbar. Gletschertore: Ost: Praktisch verschwunden, nicht mehr begehbar. West: Ca. 30m breit und 3m hoch, entlang dem Gletscherbach bis weit unter die Eismassen begehbar. Der Stirnbereich ist im Vergleich zu 2003 deutlich zurückgegangen (> 10m)und scheinbar auf der Gletscheroberfläche abgesackt. Messung: A) GPS-Punktmessung mit GeoExplorer3 (Trimble). B) Konventionelle Messung (Messband, Bussole, Neigungsmesser), gleiche Punkte wie GPS-Messung. Genauigkeit: A) GPS: Die Vergleichsmessungen von 3 Fixpunkten ergaben Abweichungen von 0.95m (Punkt 12), 2.05m (Punkt G) und 2.65m (Punkt 14). Fixpunkt 14 liegt auf einem instabilen Schuttwall. B) Die konventionelle Messung macht einen guten Eindruck. Die Abweichungen zur GPS-Messung nehmen mit dem Messverlauf nach Osten zu (bis max. 4.4m horizontale Differenz zwischen den Messpunkten, schlechtere Satelliten-Konstellation nach Osten). Messlinie 9109: Hier befindet sich der Gletscher weiter vorne, Fehlinterpretation im 2003; Messlinie wird nicht verwendet. Messlinie 9115 macht keinen Sinn mehr, da Messung hier lateral. Die Messung 2004 beschränkt sich damit auf den zentralen Bereich der Gletscherzunge. Hier ist die Gletscherzunge seit 2003 praktisch unverändert geblieben. Ostlicher Gletscherrand: Der östliche Zungenlappen (am Hang) steht nicht mehr mit dem aktiven Gletscher in Verbindung. Die Messlinien 9116 und 9117 können aufgehoben werden. Auswertung: Die Basislinie mit Azimut 0^g ist noch brauchbar, die Gletscherzunge als Ganzes scheint sich aber langsam von der Nordausrichtung zu verlagern. Eventuell wäre eine Messlinie von 10^g günstiger. (M. Frei)

2005: Kein Schnee im Messbereich. Die Gletscherzunge ist vollständig von Schutt überlagert, Eis ist nur an wenigen Stellen sichtbar. Der Verlauf der Gletscherzunge ist vorallem im zentralen Bereich nicht immer eindeutig. Die dem eigentlichen Gletscherkörper vorgelagerten Schuttformen scheinen aber kein Eis mehr zu enthalten. Es tritt nirgens Wasser aus, das noch auf Toteis hinweisen würde. Abflussverhältnisse: Wasser tritt an diversen Stellen aus dem Gletscher aus, vorallem im Bereich des westlichen Gletschertors und nördlich des Sees. Am hervortretenden Eis ist der Schmelzprozess voll im Gange. Nordwestlich des Sees tritt milchiges, aus dem westlichen Gletschertor dagegen klares Wasser aus. Gletschertore: Ost: Eigentliches Tor ist verschwunden, Wasser tritt direkt unter der Eismasse hervor. West: Das Gletschertor ist in sich zusammengefallen. Der Stirnbereich von rund 5m Tiefe hat sich dabei von der restlichen Eismasse getrennt. Messung: A) GPS-Punktmessung mit GeoExplorer3 (Trimble). B) Konventionelle Messung (Messband, Bussole, Neigungsmesser), gleiche Punkte wie GPS-Messung. Genauigkeit: A) GPS: Die Vergleichsmessungen von 2 Fixpunkten ergaben Abweichungen von 4.90m (Punkt G) und 0.62m (Punkt 14). Fixpunkt 14 liegt auf einem eher instabilen Schuttwall, scheint sich aber seit 2004 nicht verschoben zu haben. B) Die konventionelle Messung macht einen guten Eindruck. Die Abweichungen zur GPS-Messung sind im mittleren Bereich der Gletscherzunge sehr gross (bis 8.5m!). Im östlichen und westlichen Bereich ist die Abweichung kleiner. Da der Gletscher sich zunehmend nach NW zurückzieht, beträgt die neue Messrichtung 370^g. (M. Frei)

84 Länta

2004: Der rasche Rückzug des Gletschers hat sich auch in diesem Jahr fortgesetzt. Auffallend ist wiederum der starke Schwund in der felsigen Steilstufe. Ich gehe davon aus, dass in wenigen Jahren der Gletscher an dieser Stelle ganz auseinanderbricht und im Vorfeld nur noch eine Toteisinsel übrig bleibt. Die westliche Seitenmoräne, die sich im Vorfeld des Länta- und Grauhorngletscher befindet, ist nicht unerwartet starker Erosion ausgesetzt. Starke Niederschläge Ende August des letzten Jahres und Anfangs August dieses Jahres haben enorme Geschiebemengen abgetragen. Die grossen Verfrachtungen sind bis hinaus zur Alp Lampertschalp (rund 6km) spür- und sichtbar. Auf den Flachstufen ist das Geröll abgelagert worden, was zur Folge hatte, dass die Bachsohle angehoben wurde, der Bachlauf sich neue Wege suchte und dabei bestehende Fahr- und Wanderwege wegriss. Dieser Prozess wird sich in den nächsten Jahren noch fortsetzten, da nach wie vor enorme Geschiebemengen in den übersteilen Seitenmoränen bereitliegen. Eine unmittelbare Gefährdung für Menschen und Sachwerte besteht nicht, Schäden sind nur an den Zugangswegen zur Alp Lampertschalp und zur Läntahütte SAC zu erwarten. Auf dem Rückweg haben wir Teile der Standlinien von 1931 und 1940 gefunden und aufgefrischt. (B. Riedi)

85 Vorab

2004: Keine Vermessung möglich. Eine Kontrolle vor Ort, am 31.08.04 ergab, dass die Firnbedeckung des äusserst flach auslaufenden Eises noch zu stark war. Die kurz darauf folgenden Schneefälle haben eine Messung verunmöglicht. (R. Hefti)

2005: Klar ersichtliche "Dickenabnahme" der Gletscher. Lifttrasse sehr steil gegen Gipfel. (R. Hefti)
88 Porchabella

2004: Die Aufnahmen konnten bei guten Bedingungen durchgeführt werden. Die Massenabnahme im Längsschnitt wird auf ca. 5m geschätzt (Vergleich 2001). Ein eindeutiges Gletschertor ist verschwunden. (Chr. Barandun)

89 Verstankla

2004: Auf den äusserst heissen Jahrhundert-Sommer 2003 folgte nach dem Wintereinbruch anfangs Oktober ein ziemlich schneereicher Winter 03/04. Am Tag der Gletschermessung war das Wetter schön, mit nur wenigen Wolken. Die Temperatur lag um die 16°C. Der Gletscher war in den Randgebieten grösstenteils schneefrei. Die markierten Basispunkte liessen sich wie üblich gut auffinden. Im Vergleich zum Vorjahr lag auf der orographisch linken Seite mehr Blockschutt und Feinmaterial, weshalb dieser Rand dementsprechend noch schlechter als im Jahr 2003 zu erkennen war. Die Geltscherrandlinie wurde gleich wie im Vorjahr mit dem GPS - Gerät aufgenommen (Knickpunkte / Gletschertore). Insgesamt sind 16 Randpunkte eingemessen worden. Um die Werte der neuen Messungen in die alte Messreihe zu integrieren, wurden die Distanzen von den einzelnen Fixpunkten bis zum Gletscherrand mit dem vorgegebenen Azimut (118^g bzw. 140^g) unter Berücksichtigung des Höhenunterschiedes umgerechnet. Der Abfluss des Wassers aus dem Gletscher teilt sich auf drei Abflüsse, von Nord nach Süd, wie 50%, zu 5%, zu 45%. Auf der ganzen Breite des Gletschers sind kleinere Wasseraustritte aus dem Geröll festzustellen. (M. Maikoff)

2005: Das Jahr 2005 darf bezüglich der Witterung als durchschnittlich bezeichnet werden. Der Gletscher war in den Randgebieten ausgeapert. Die Gletscherzunge ist mit viel Blockschutt und Feinmaterial beladen. Die markierten Basispunkte liessen sich wie üblich gut auffinden.Die Gletscherrandlinie wurde gleich wie in den letzten Jahren mit dem GPS - Gerät aufgenommen (Knickpunkte / Gletschertore). Insgesamt sind 12 Randpunkte eingemessen worden. Um die Werte der neuen Messungen in die bestehende Messreihe zu integrieren, wurden die Distanzen von den einzelnen Fixpunkten bis zum Gletscherrand mit dem vorgegebenen Azimut (118⁹) unter Berücksichtigung des Höhenunterschiedes umgerechnet. (M. Maikoff)

90 Silvretta

2004: Vermessungsflug am 5.10.2004, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

2005: Vermessungsflug am 15.9.2005, photogrammetrische Auswertung durch H. Bösch und A. Bauder VAW/ETHZ. (VAW/ETHZ - A. Bauder)

91 Sardona

2004: Der Gletscher wies eine leichte Schneebedeckung auf und die Temperatur betrug warme ca. 17°C. Die Messungen erfolgten ab den Messpunkten 1, 2, 3 und 4. Die Messungen wurden wieder mit dem Fadenmessgerät vorgenommen. In allen Punkten erfolgte die Messung im traditionellen Azimut 295^g. Der Gletscherrand war in den Punkten 1 bis 3 als Eisrand erkennbar. In Punkt 4 war der Gletscherrand von Schutt überdeckt. Er konnte für die Messung jedoch wieder relativ sicher erkannt werden. Zwischen Punkt 4 und 5 liegt ein grösseres Schuttfeld. In den Punkten 5 und 6 war der Gletscher von einer tiefen Schneedecke bedeckt, was ein Aufspüren des Eisrandes verunmöglichte. Vielleicht befindet sich unter der Schneedecke bei Punkt 6 im Messazimut gar kein Eis. Im weiteren wird unter dem Schutt zwischen Punkt 3 und 4 noch eine grössere Menge überdecktes Eis vermutet; eine genaue Lokalisation ist jedoch nicht möglich. Um bei nachfolgenden Gletscherkontrollen das Auffinden der Basispunkte zu erleichtern, wurden diese mit (diesmal hoffentlich!) dauerhafter Farbe nachgefärbt. (A. Hartmann)

2005: Der Gletscher wies keine Schneebedeckung auf. Das Wetter war zeitweise stark durch Nebelschwaden bestimmt, was der Qualität der Fotos leider abträglich war. Die Messungen erfolgten ab den Messpunkten 1, 2, 3, 4 und 5. Die Messungen wurden wieder mit dem Fadenmessgerät vorgenommen. In allen Punkten erfolgte die Messung im traditionellen Ableseazimut 295^g. Nach Korrektur des Instrumentenfehlers beträgt das effektive Beobachtungsazimut 289⁹. Der Gletscherrand war in den Punkten 1 bis 5 als Eisrand erkennbar. In den Punkten 2 bis 4 war der Gletscherrand von Schutt überdeckt. Er konnte für die Messung jedoch wieder relativ sicher erkannt werden. Das Schuttfeld zwischen den Punkten 4 und 5 trat sehr deutlich zutage. Bei Punkt 5 war dem Gletscher etwas Firn vorgelagert. Bei Punkt 6 ergab sich im Messazimut kein Schnitt mit dem Gletscherrand. Der Gletscher ist in diesem Bereich verschwunden. Im Weiteren wird unter dem Schutt zwischen Punkt 3 und 4 immer noch eine grössere Menge überdeckten Eises vermutet; eine genaue Lokalisation ist jedoch nicht möglich. Die Spalten und die teilweise grossen Felsblöcke, welche der Gletscher transportiert, waren deutlich erkennbar. Man hat beim Anblick des Gletschers den Eindruck, dass die abbauenden Kräfte die aufbauenden weit überwiegen. Das Auffinden der Fixpunkte wurde durch die letztjährige gute Bemalung und die GPS-Referenzwerte übrigens sehr erleichtert. (A. Hartmann)

92 Roseg

2004: "Kalbung" des Gletschers mit vielen Eisbergen - Schmelzprozess! Neuer Fixpunkt (587m näher zum Gletscher und 30m links in Blickrichtung zum Gletscher) gesetzt, Fixpunkte mit GPS eingemessen. Starker Rückzug linksseitig. (G. Bott)

2005: Messung ab Fixpunkt 2004. Zahlreiche Eisberge im See. Gute Messbedingungen. Zunge wird immer dünner. (G. Bott)

93 Tschierva

2004: Messrichtung wie 2003. Neuer Fixpunkt 186 näher zum Gletscher (Stein, blaue Markierung). Zahlreiche Holzfunde. (G. Bott)

2005: Messung ab Fixpunkt 2004. Gletscher schneebedeckt. Gute Messbedingungen. (G. Bott)

94 Morteratsch

2004: Es wird an 17 einzelnen Profillinien im Abstand von 20m gemessen. Neben den positive Verte (5) im Bereich des letztjährigen Gletschertors orogr. rechts wurden auch positive Werte (6) orogr. links (wo es etwas Schuttbedeckung hat) verzeichnet. Beim 'eingestürzten' Gletschertor handelt es sich um zusammenhängende Eismasse. Die Front war letztes Jahr viel steiler und hat sich nun ausgedünnt. Der ermittelte Wert scheint unter diesen Gesichtspunkten plausibel - vermutlich war der letztjährige (rekordmässige) Rückzugswert halt um den diesjährigen Vorstossbetrag von rund 10m zu gross. (G. Bott)

2005: Messung ab Fixpunkt 2004. Gute Messbedingungen. Grotte vom Winter 2004/2005 ist praktisch abgeschmolzen. (G. Bott)

95 Calderas

2005: Messung ab Fixpunkt 2002. Neues, linksseitiges Rundloch im Gletscherkörper. Neues, begehbares Gletschertor links entstanden, ca. 65m. (G. Bott)

96 Tiatscha

2004: Gletscher ist stationär, wegen der derzeitige Lage des Gletscherrandes und der Gefahr von Eisabbrüchen aber nicht mehr messbar. (M. Stadler)

2005: Keine Messung mehr möglich. Optisch keine Längenänderung feststellbar, da Gletscherrand auf einer Felsstufe. (M. Stadler)

97 Sesvenna

2004: Der Gletscher zeigte während der diesjährigen Vermessung einen geringen aber stetigen Rückgang. (G.C. Feuerstein)

2005: Aufgrund des frühen Wintereinbruchs keine Messung möglich. (G.C. Feuerstein)

98 Lischana

2004: Der Gletscherrand scheint stationär. Rund die Hälfte der Zunge stösst an einem Felskopf auf. Das Eis scheint nun immer etwa am selben Ort an diesem Felskopf aufzuhören, was vermuten lässt, dass der Gletscherzungenstand wenig aussagekräftig ist. Hingegen muss festgestellt werden, dass der Gletscher vom oberen Rand her immer stärker durch Geröll und sonstiges Erdmaterial zugeschüttet wird. Die Fotos zeigen, dass der Rückzug des nunmehr sehr kleinen Gletschers stärker an der oberen Kante als an der Zunge vorne ist. (G.C. Feuerstein)

2005: Gletscherrand stationär, an Felskopf anstossend. Grosse Veränderungen am Gletscheranfang: Immer stärker durch Geröll und sonstiges Erdmaterial zugeschüttet. (G.C. Feuerstein)

99 Cambrena

2004: Piccolo laghetto davanti al punto 2 (nessun pericolo). (G. Berchier)

2005: Laghetto di fronte al punto 2 (nessun pericolo). (G. Berchier)

100 Palü

2004: La misurazione diventa sempre più difficile. Necessita di fissare un nuovo metodo. (G. Berchier)

2005: Starker Rückgang. Messdispositiv muss angepasst werden. (G. Berchier)

101 Paradisino (Camp)

2004: Misuratione del punto 3 e stima del punti 4 e 5. (G. Berchier)

2005: La lingua del ghiaccioia è diventata molto stretta. Ho installato un nuovo punto 1. (G. Berchier)

103 Bresciana

2004: Il fronte del ghiacciaio si trova ad una quota di 2900 sopra il livello del mare. La lingua del ghiacciaio va praticamente orizzontale tra la morena che si trova a destra e la roccia che e a sinistra. La parte sottostante (resto di lingua di ghiaccio) sulla sinistra è ora quasi scomparso ed e staccato dalla lingua principale. Questa parte di ghiacciaio per l'anno 2004 non è stato preso in considerazione per le misure di arretramento. (C. Valeggia)

2005: Trovandosi ora questo ghiacciaio ad una quota di 2900 sopra il livello del mare il suo arretramento non è pii cosi notevole come gli anni precedenti. La lingua del ghiacciaio va praticamente orizzontale tra la morena che si trova a destra e la roccia che è a sinistra. La parte sottostante (resto di lingua di ghiaccio) sulla sinistra è ora quasi scomparso ed è staccato dalla lingua principale. (C. Valeggia)

104 Basòdino

2004: La lingua di ghiaccio si è appiattita notevolmente come pure il suo spessore. Sulla destra della lingua del ghiacciaio s'intravede una sporgenza di roccia lunga 60 m che dal fronte sale verso il ghiacciaio. (C. Valeggia)

2005: La lingua di ghiaccio si è appiattita notevolmente come pure il suo spessore. Sulla destra della lingua del ghiacciaio s'intravede una sporgenza di roccia lunga 60 m che dal fronte sale verso il ghiacciaio. (C. Valeggia)

105 Rossboden

2004: Die Gletscherzunge ist derart mit Material bedeckt, dass eine verlässliche Messung verunmöglicht wird. Bis auf weitere wird desshalb auf jährliche Messungen verzichtet aber die weitere Entwicklung mit Fotos dokumentiert. (F. Pfammatter)

109 Kanderfirn

2004: Messpunkte aufgefrischt und neu markiert. (U. Fuhrer)

2005: Grosser Massenverlust. Schöne tatzenförmige Gletscherzunge. (U. Fuhrer)

111 Ammerten

2005: Dieser Sommer hat dem Gletscher mehr als erwartet zugesetzt. In den letzten Jahren auffallend starker Schwund auch in der Gipfelregion (Gipfellappen, Gwächten). (E. Hodel)

112 Dungel

2004: Die Gletscherzunge war am Tag der Messung vollständig ausgeapert. Wiederum konnte die ganze Geometrie des Zungenendes erfasst werden. Der Gletscher scheint gegenüber dem Vorjahr nur unmerklich an Länge eingebüsst zu haben. (A. Wipf)

2005: Es herrschten ideale Verhältnisse: Die Gletscherzunge hebt sich durch den erhalten gebliebenen Neuschnee sehr deutlich von der schneefreien Umgebung ab. Im östlichen Zungenbereich zeigen sich Zerfallserscheinungen, kleine Gletscherteile scheinen sich vom Hauptgletscher abzutrennen. Diese wurden aber noch zum Gletscher gehörend interpretiert. Neben dem bereits vorhandenen Fotostandort wurde ein neuer, zusätzlicher Standort für die alljährlichen fotografischen Aufnahmen bestimmt. (A. Wipf)

113 Gelten

2004: Die Verhältnisse präsentieren sich beim Geltengletscher am Tag der Messung nicht optimal. Einerseits endet das Zungenende des westlichsten Gletscherlappens am Fuss einer Steilstufe, wo sich Lawinenschnee bevorzugt ansammelt und andererseits stellt sich jedes Jahr das Problem, dass das Zungenende flach ausläuft und vielerorts mit Schutt überdeckt ist. Es konnte nur gerade der westlichste Teil ohne Probleme eingemessen werden. Gegen Osten wurde der Verlauf unsicher respektive eine Messung war gar nicht möglich. Im östlichen Teil wird das exakte Bestimmen des Zungenendes durch die starke Schuttbedeckung erschwert. Zudem wird die Bildung von Toteis in dem etwas flacheren Bereich eine zusätzliche Erschwerung einer künftigen Vermessung bilden. (A. Wipf)

2005: Wie im vorangegangenen Jahr sind die Verhältnisse ungünstig: Das flach auslaufende Zungenende ist noch von Lawinenschnee überdeckt und verunmöglichte so eine Vermessung. Im östlichen Teil verdeckt eine dichte Obermoräne das Gletschereis, hier wird eine Vermessung wohl erst wieder möglich, wenn sich das Zungenende in die Steilstufe zurückzieht. Die Vermessung dürfte dann aber um einiges gefährlicher sein. Vergleicht man die heutige (2005) Ausdehnung mit den Fotos aus dem Jahr 2004, so hat der Gletscher im Zungenbereich deutlich an Eismächtigkeit verloren. Zudem hat sich eine Felsinsel (2004) vergrössert, sodass das Einzugsgebiet im östlichen Teil nicht mehr direkt mit der Zunge des Gletschers in Verbindung steht. (A. Wipf)

114 Plattalva

2004: Beim im vergangenen Jahr angepassten Basispunkt 1 ist der Gletscher nur um 0.5m zurückgewichen. Die Punkte 3 bis 5 weisen seit dem letzten Jahr keine Veränderung auf. (U. Steinegger)

2005: Ganzer Gletscher schneebedeckt, ca. 25cm im Zungenbereich. Punkt 5 liegt im Randbereich und der Eisrand verläuft nahezu in Messrichtung. (U. Steinegger)

115 Scaletta

2004: Fixpunkt F um 0.5m nach unten gerutscht. Teile der Zunge sind von Altschnee bedeckt. (B. Teufen)

2005: Referenzpunkt erneut 0.5m nach unten gerutscht. Keine Schneebedeckung. Basispunkte neu gefärbt. (B. Teufen)

117 Valleggia

2004: La lingua del ghiacciaio termina nella vallata tra la morena di roccia e la montagna. Il suo fronte è ripido con una coltre di ghiaccio assai consistente nella parte centrale della lingua del ghiacciaio. La sporgenza di roccia che si trova al centro del ghiacciaio e sempre più evidente come mostrano le fotografie annesse. (C. Valeggia)

2005: La lingua del ghiacciaio termina nella vallata tra la morena di roccia e la montagna. Il suo fronte e ripido con una coltre di ghiaccio assai consistente nella parte centrale della lingua del ghiacciaio. La sporgenza di roccia che si trova al centro del ghiacciaio e sempre più evidente come mostrano le fotografie annesse. (C. Valeggia)

118 Val Torta

2004: Il ghiacciaio si è appiattito notevolmente senza avere una coltre di ghiaccio molto consistente ed è in gran parte ricoperto da detriti di roccia. Le fotografie annesse mostrano molto bene questa situazione, inoltre si nota alcune sporgenze di roccia sia nel ghiacciaio, come pure a valle del fronte. Il nevaio che l'anno scorso era scomparso si riformato vedi rilievo e fotografie. (C. Valeggia)

2005: Il ghiacciaio si è appiattito notevolmente senza avere una coltre di ghiaccio molto consistente ed è in gran parte ricoperto da detriti di roccia. Il ghiacciaio è in fase di estinzione (Toteis) e non ha più alimentazione e nei prossimi anni scomparirà...! Le fotografie annesse mostrano molto bene questa situazione, noltre si nota alcune sporgenze di roccia sia nel ghiacciaio, come pure a valle del fronte. (C. Valeggia)

119 Cavagnoli

2004: Il fronte del ghiacciaio che si misura termina in una zona pianeggiante formando davanti alla lingua un laghetto, le dimensioni di quest'ultimo stanno aumentando come mostrano i rilievi, documentato anche con alcune fotografie e come da schizzo allegato. La lingua del ghiacciaio si é appiattita notevolmente. (C. Valeggia)

2005: Il fronte del ghiacciaio che si misura termina in una zona pianeggiante formando davanti alla lingua un laghetto. Anche quest'anno il laghetto è aumentato in lunghezza dovuto al ritiro del ghiacciaio di circa 15 metri. La lingua del ghiacciaio si é appiattita notevolmente. (C. Valeggia)

120 Corno

2004: Anche quest'anno abbiamo misurato tutto il fronte del ghiacciaio, sicuramente in un prossimo futuro le misurazioni saranno tra le due sporgenze di roccia, come risulta dalle fotografie annesse rilevate dalla stazione HP 3. La vera lingua del ghiacciaio si trova tra le due rocce, una morena si sta formando sopra la roccia di destra e dividerà il ghiacciaio in due parti. La parte destra del ghiacciaio non è più voluminosa e anche la lingua si è appiattita. In questa parte il ghiacciaio è arretrato di circa 50 metri. (C. Valeggia)

2005: Anche quest'anno abbiamo misurato tutto il fronte del ghiacciaio, sicuramente in un prossimo futuro le misurazioni saranno tra le due sporgenze di roccia, come risulta dalle fotografie annesse rilevate dalla stazione HP 3. La vera lingua del ghiacciaio si trova tra le due rocce, una morena si sta formando sopra la roccia di destra e dividerà il ghiacciaio in due parti. La parte destra del ghiacciaio non è più voluminosa e anche la lingua si è appiattita notevolmente e ricoperta di detriti. (C. Valeggia)

173 Seewjinen

2004: Vermessungsflug am 7.9.2004, photogrammetrische Auswertung durch H. Bösch - VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ - H. Bösch)

2005: Vermessungsflug am 15.09.2005, photogrammetrische Auswertung durch H. Bösch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. Veränderung links -38m und rechts -4m, tiefster Punkt 2705 m.ü.M. (VAW/ETHZ - H. Bösch)

352 Croslina

2004: La lingua del ghiacciaio si trova sopra il laghetto su roccia sia lateralmente come pure davanti al fronte. Il laghetto è completamente visibile. (C. Valeggia)

2005: La lingua del ghiacciaio si trova sopra il laghetto su roccia sia lateralmente come pure davanti al fronte. Il laghetto è completamente visibile. (C. Valeggia)

353 Vadrecc di Camadra

2005: Il ghiacciaio è stato misurato la prima volta il 29 agosto 2005. Questo ghiacciaio si trova nel comune di Ghirone ed è il più a nord ghiacciai ticinesi, sotto al pizzo Medels. (C. Valeggia)

C Investigators

C.1 Length Variation (2005)

Glacier	No.	Investigator
Allalin	11	VAW/ETHZ, Hermann Bösch
Alpetli (Kanderfirn)	109	KAWA/BE, Ueli Fuhrer
Ammerten	111	Erwin Hodel
Arolla (Mont Collon)	27	DWL/VS, Frédéric Pralong
Basòdino	104	SF/TI, Claudio Valeggia
Bella Tola	21	DWL/VS, Peter Tscherrig
Biferten	77	Hanspeter Klauser
Blüemlisalp	64	KAWA/BE, Ueli Fuhrer
Boveyre	41	DWL/VS, Olivier Guex
Breney	36	Jean-Jacques Chabloz
Bresciana	103	SF/TI, Claudio Valeggia
Brunegg (Turtmann)	20	DWL/VS, Peter Tscherrig
Brunni	72	AFJ/UR, Jann Marx
Calderas	95	AfW/GR, Giachem Bott
Cambrena	99	AfW/GR, Gilbert Berchier
Cavagnoli	119	SF/TI, Claudio Valeggia
Cheillon	29	DWL/VS, Olivier Bourdin
Corbassière	38	VAW/ETHZ, Andreas Bauder
Corno	120	SF/TI, Claudio Valeggia
Croslina	352	SF/TI, Claudio Valeggia
Damma	70	AFJ/UR, Jann Marx
Dungel	112	Andreas Wipf
Eiger	59	KAWA/BE, Rudolf Zumstein
En Darrey	30	DWL/VS, Olivier Bourdin
Fee (Nord)	13	DWL/VS, Urs Andenmatten
Ferpècle	25	DWL/VS, Frédéric Pralong
Fiescher	4	DWL/VS, Peter Aschilier
Findelen	16	VAW/ETHZ, Andreas Bauder
Firnalpeli (Ost)	75	AWR/OW, Stephan Flury
Forno	102	AfW/GR, Curdin Mengelt
Gamchi	61	KAWA/BE, Roland Descloux
Gauli	52	Rudolf Straub
Gelten	113	Andreas Wipf
Giétro	37	VAW/ETHZ, Andreas Bauder

Glärnisch80Hanspeter KlauserGorner14DWL/VS, Leo JörgerGrand Désert31DWL/VS, François VouillamozGrand Plan Névé45FFN/VD, JPh. MarétazGries3VAW/ETHZ, Andreas BauderGriess74AFJ/UR, Beat AnnenGriessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHilfi73AFJ/UR, Anton ArnoldKattwasser7DWL/VS, Martin SchmidhalterKesigen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLämmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMoring23currently not observedMorty24DWL/VS, Fradçois VouillamozMont Fort (Tortin)32DWL/VS, Fridéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar84AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristian ThelerOberol10AfW/GR, Cristian BarandunPrizol83AfW/GR, Cristian BarandunParadies86AfW/GR, Cristian BarandunPrizol84FFN/VD, Jacques BinggeliPunteglia	Glacier	No.	Investigator
Gorner14DWL/VS, Leo JörgerGrand Désert31DWL/VS, François VouillamozGrand Plan Névé45FFN/VD, JPh. MarlétazGriess74AFJ/UR, Beat AnnenGriess74AFJ/UR, Beat AnnenGriessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLämmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMottelaletsch106currently not observedMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, François VouillamozMont Miné20Florton AG / KWOOberaar50Florton AG / KWOOberaar50Florton AG / KWOOberaar50Florton AG / KWOOberaar64AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert Berchier <td>Glärnisch</td> <td>80</td> <td>Hanspeter Klauser</td>	Glärnisch	80	Hanspeter Klauser
Grand Désert31DWL/VS, François VouillamozGrand Plan Névé45FFN/VD, JPh. MarlétazGriess3VAW/ETHZ, Andreas BauderGriessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMoing23currently not observedMoning23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMottelatsch06DWL/VS, François VouillamozMotteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberafes86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Christian ThelerOberer Grindelwald57Hans BossOtenma34Jean-Jacques ChablozPali100AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert Berchier<	Gorner	14	DWL/VS, Leo Jörger
Grand Plan Névé45FFN/VD, JPh. MarlétazGriess3VAW/ETHZ, Andreas BauderGriessen76AKJ/UR, Beat AnnenGriessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKesigen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinMittelaletsch106currently not observedMoning23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Frácic PralongMotteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaales86AfW/GR, Gilbert BerchierPalui100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold Hartmann	Grand Désert	31	DWL/VS, François Vouillamoz
Gries3VAW/ETHZ, Andreas BauderGriess74AFJ/UR, Beat AnnenGriessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKeshen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLäschana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoring23currently not observedMont Durand35Jean-Jacques ChablozMont Miné26DWL/VS, Fraédéric PralongMotteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfObereaar50Flotron AG / KWOOberer Grindelwald57Hans BossOterma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristian FislerParadies86AfW/GR, Christian BarandunPrajo48FFN/VD, Jacques BinggeliPituty101AfW/GR, Gilbert BerchierParadies86AfW/GR, Christian BarandunPrajo48FFN/VD, Jacques BinggeliPitutglias83AfW/GR, Gilbert BerchierParadie	Grand Plan Névé	45	FFN/VD, JPh. Marlétaz
Griess74AFJ/UR, Beat AnnenGressen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoning23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Frádéric PralongMotreatsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadisino (Campo)101AfW/GR, Gilbert BerchierParadisino (Campo)101AfW/GR, Christian BarandunPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques Binggeli <td>Gries</td> <td>3</td> <td>VAW/ETHZ, Andreas Bauder</td>	Gries	3	VAW/ETHZ, Andreas Bauder
Griessen76AWR/OW, Stephan FluryGrosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLischana98AfW/GR, Gian Cla FeuersteinLismmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoring23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Fránçois VouillamozMont Miné26DWL/VS, Frédéric PralongMotteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Cristian ThelerOberaletsch6DWL/VS, Cristian ThelerPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Cristian BarandunPrapio48FFN/VD, Jacques BinggeliPizol81KfA/SG, Arnold HartmannPlatatlva114Urs SteineggerPorchabella88AfW/GR, Giachem BottRoming33AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques Binggeli <td>Griess</td> <td>74</td> <td>AFJ/UR, Beat Annen</td>	Griess	74	AFJ/UR, Beat Annen
Grosser Aletsch5VAW/ETHZ, Andreas BauderHüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoring23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giahem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar50AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristian ThelerObera31Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristian BarandunPizol81KfA/SG, Arnold HartmannPlatalva114Urs SteineggerPorchabella88AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Siachem BottRhone <td>Griessen</td> <td>76</td> <td>AWR/OW, Stephan Flury</td>	Griessen	76	AWR/OW, Stephan Flury
Hüfi73AFJ/UR, Anton ArnoldKaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gan Cla FeuersteinLämmern73KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frádéric PralongMotteratsch94AfW/GR, Giahern BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Cristian ThelerOberar57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadisino (Campo)101AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Christian BarandunPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Giabert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliP	Grosser Aletsch	5	VAW/ETHZ, Andreas Bauder
Kaltwasser7DWL/VS, Martin SchmidhalterKehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoning23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giaher BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Christian BarandunPlattalva114Urs SteineggerPorchabella88AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Ferdinand PfammatterRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotirin (Nord)69AFJ/UR, Martin PlanzerRiazli </td <td>Hüfi</td> <td>73</td> <td>AFJ/UR, Anton Arnold</td>	Hüfi	73	AFJ/UR, Anton Arnold
Kehlen68AFJ/UR, Martin PlanzerKessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Gian Cla FeuersteinLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, François VouillamozMont Miné20DWL/VS, Fridéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberaletsch6DWL/VS, Christian ThelerOberadison (Campo)101AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Giachem BottPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Giachem BottRoseg92AfW/GR, Giachem BottRoseg92AfW/GR, Giachem Bott <td>Kaltwasser</td> <td>7</td> <td>DWL/VS, Martin Schmidhalter</td>	Kaltwasser	7	DWL/VS, Martin Schmidhalter
Kessjen12VAW/ETHZ, Hermann BöschLang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Frádéric PralongMort Ainé26DWL/VS, Frédéric PralongMorteatsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberaletsch6DWL/VS, Christian ThelerOberaletsch6AfW/GR, Gilbert BerchierPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlatalva114Urs SteineggerPorchabella88AfW/GR, Gilbert BardierPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Giachem BottRoseg92AfW/GR, Giachem BottRoseg <td>Kehlen</td> <td>68</td> <td>AFJ/UR, Martin Planzer</td>	Kehlen	68	AFJ/UR, Martin Planzer
Lang18DWL/VS, Hans HenzenLavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberaer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRossboden105DWL/VS, Ferdinand PfammatterRossboden105DWL/VS, Ferdinand PfammatterRatzli65currently not observedSaleina42DWL/VS, Olivier Guex	Kessjen	12	VAW/ETHZ, Hermann Bösch
Lavaz82AfW/GR, Urban MaissenLenta84AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar50Flotron KG, Gilbert BerchierPalü100AfW/GR, Gilbert BerchierPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Cristian BislerParadies88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRossboden105DWL/VS, Ferdinand PfammatterRossboden105DWL/VS, Fordinand PfammatterRotirin (Nord)69AFJ/UR, Martin PlanzerRatzli65currently not observedSaleina42DWL/VS, Olivier Guex <td>Lang</td> <td>18</td> <td>DWL/VS, Hans Henzen</td>	Lang	18	DWL/VS, Hans Henzen
Lenta84AfW/GR, Bernard RiediLimmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Ferdinand PfammatterRossboden105DWL/VS, Ferdinand PfammatterRostpoint105DWL/VS, Ferdinand PfammatterRizili65currently not observedSaleina42DWL/VS, Olivier Guex <td>Lavaz</td> <td>82</td> <td>AfW/GR, Urban Maissen</td>	Lavaz	82	AfW/GR, Urban Maissen
Limmern78Urs SteineggerLischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Ciristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRötrin (Nord)69AFJ/UR, Martin PlanzerRätzli65currenty not observedSaleina42DWL/VS, Olivier Guex <td>Lenta</td> <td>84</td> <td>AfW/GR, Bernard Riedi</td>	Lenta	84	AfW/GR, Bernard Riedi
Lischana98AfW/GR, Gian Cla FeuersteinLämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Kiné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberar Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRötfin (Nord)69AFJ/	Limmern	78	Urs Steinegger
Lämmern63KAWA/BE, Ulrich VogtMittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, Frádéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar50Flotron AG / KWOOberaar60DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfanmatterRöttin (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS,	Lischana	98	AfW/GR, Gian Cla Feuerstein
Mittelaletsch106currently not observedMoiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Lämmern	63	KAWA/BE, Ulrich Vogt
Moiry24DWL/VS, Marcel BarmazMoming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Mittelaletsch	106	currently not observed
Moming23currently not observedMont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Moiry	24	DWL/VS, Marcel Barmaz
Mont Durand35Jean-Jacques ChablozMont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Moming	23	currently not observed
Mont Fort (Tortin)32DWL/VS, François VouillamozMont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRosspoden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Mont Durand	35	Jean-Jacques Chabloz
Mont Miné26DWL/VS, Frédéric PralongMorteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRosspoden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Mont Fort (Tortin)	32	DWL/VS, François Vouillamoz
Morteratsch94AfW/GR, Giachem BottMutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Mont Miné	26	DWL/VS, Frédéric Pralong
Mutt2Ueli WittorfOberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Gilbert BerchierParadies86AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Morteratsch	94	AfW/GR, Giachem Bott
Oberaar50Flotron AG / KWOOberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Mutt	2	Ueli Wittorf
Oberaletsch6DWL/VS, Christian ThelerOberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRosspoden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Oberaar	50	Flotron AG / KWO
Oberer Grindelwald57Hans BossOtemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRostfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Oberaletsch	6	DWL/VS, Christian Theler
Otemma34Jean-Jacques ChablozPalü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRostfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Oberer Grindelwald	57	Hans Boss
Palü100AfW/GR, Gilbert BerchierPaneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Otemma	34	Jean-Jacques Chabloz
Paneyrosse44FFN/VD, JPh. MarlétazParadies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRötfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Palü	100	AfW/GR, Gilbert Berchier
Paradies86AfW/GR, Cristina FislerParadisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Paneyrosse	44	FFN/VD, JPh. Marlétaz
Paradisino (Campo)101AfW/GR, Gilbert BerchierPizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRötfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Paradies	86	AfW/GR, Cristina Fisler
Pizol81KfA/SG, Arnold HartmannPlattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Paradisino (Campo)	101	AfW/GR, Gilbert Berchier
Plattalva114Urs SteineggerPorchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Pizol	81	KfA/SG, Arnold Hartmann
Porchabella88AfW/GR, Christian BarandunPrapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Plattalva	114	Urs Steinegger
Prapio48FFN/VD, Jacques BinggeliPunteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Porchabella	88	AfW/GR, Christian Barandun
Punteglias83AfW/GR, Maurus FreiRhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Prapio	48	FFN/VD, Jacques Binggeli
Rhone1VAW/ETHZ, Andreas BauderRied17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Punteglias	83	AfW/GR, Maurus Frei
Ried17DWL/VS, Peter RovinaRoseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Rhone	1	VAW/ETHZ, Andreas Bauder
Roseg92AfW/GR, Giachem BottRossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Ried	17	DWL/VS, Peter Rovina
Rossboden105DWL/VS, Ferdinand PfammatterRotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Roseg	92	AfW/GR, Giachem Bott
Rotfirn (Nord)69AFJ/UR, Martin PlanzerRätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Rossboden	105	DWL/VS, Ferdinand Pfammatter
Rätzli65currently not observedSaleina42DWL/VS, Olivier Guex	Rotfirn (Nord)	69	AFJ/UR, Martin Planzer
Saleina 42 DWL/VS, Olivier Guex	Rätzli	65	currently not observed
	Saleina	42	DWL/VS, Olivier Guex

Glacier	No.	Investigator
Sankt Anna	67	AFJ/UR, Jann Marx
Sardona	91	KfA/SG, Arnold Hartmann
Scaletta	115	Bernardo Teufen
Schwarz	62	KAWA/BE, Ulrich Vogt
Schwarzberg	10	VAW/ETHZ, Hermann Bösch
Sesvenna	97	AfW/GR, Gian Cla Feuerstein
Sex Rouge	47	FFN/VD, Jacques Binggeli
Silvretta	90	VAW/ETHZ, Andreas Bauder
Stein	53	Rudolf Straub
Steinlimmi	54	Rudolf Straub
Sulz	79	AW/GL, Thomas Rageth
Suretta	87	AfW/GR, Cristina Fisler
Tiatscha	96	AfW/GR, Markus Stadler
Tiefen	66	AFJ/UR, Jann Marx
Trient	43	Jacques Ehinger
Trift (Gadmen)	55	VAW/ETHZ, Andreas Bauder
Tsanfleuron	33	DWL/VS, Jean-Daniel Brodard
Tschierva	93	AfW/GR, Giachem Bott
Tschingel	60	KAWA/BE, Rudolf Zumstein
Tseudet	40	DWL/VS, Olivier Guex
Tsidjiore Nouve	28	DWL/VS, Frédéric Pralong
Turtmann	19	DWL/VS, Peter Tscherrig
Unteraar	51	Flotron AG / KWO
Unterer Grindel	wald 58	Hans Boss
Val Torta	118	SF/TI, Claudio Valeggia
Valleggia	117	SF/TI, Claudio Valeggia
Valsorev	39	DWL/VS. Olivier Guex
Verstankla	89	AfW/GR. Michael Maikoff
Vorab	85	AfW/GR. Reto Hefti
Wallenbur	71	AFJ/UR. Pius Kläger
Zinal	22	DWL/VS. Marcel Barmaz
Zmutt	15	currently not observed
AFJ/UR	Amt für Forst und	Jagd, Uri
AfW/GR	Amt für Wald, Graubünden	
AW/GL	Abteilung Wald, Glarus	
AWR/OW	Amt für Wald und	Raumentwicklung, Obwalden
DWL/VS	Dienststelle für Wa paysage (SFP), W	ald und Landschaft/Service des forêts et du /allis/Valais
FFN/VD	Service des forêts, de la faune et de la nature, Vaud	
KAWA/BE	Amt für Wald, Ber	rn
KfA/SG	Waldregion 3 Sarg	ans, St. Gallen
SF/TI	Sezione forestale,	Ticino
VAW/ETHZ	Versuchsanstalt fü ETH Zürich	ir Wasserbau, Hydrologie und Glaziologie,

Glacier	No.	Investigator
Allalin	11	VAW/ETHZ, Hermann Bösch
Basòdino	104	Giovanni Kappenberger
Clariden	141	Giovanni Kappenberger
Corbassière	38	VAW/ETHZ, Andreas Bauder
Giétro	37	VAW/ETHZ, Andreas Bauder
Gries	3	VAW/ETHZ, Martin Funk
Hohlaub	174	VAW/ETHZ, Hermann Bösch
Oberaar	50	Flotron AG
Schwarzberg	10	VAW/ETHZ, Hermann Bösch
Silvretta	90	VAW/ETHZ, Andreas Bauder
Unteraar	51	Flotron AG

C.2 Mass Balance and Velocity

C.3 Englacial Temperature

Site (Glacier)	No.	Investigator
Colle Gnifetti (Gorner)	14	VAW/ETHZ, Aurel Schwerzmann GIUZ, Ralph Böhlert

Flotron AG	Flotron AG, Meiringen
VAW/ETHZ	Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie,
	ETH Zürich
GIUZ	Geographisches Institut, Universität Zürich